
Specification Version: 1.0.1

Open Container Initiative Runtime Specification

The [Open Container Initiative][oci] develops specifications for standards on
Operating System process and application containers.

Abstract

The Open Container Initiative Runtime Specification aims to specify the con-
figuration, execution environment, and lifecycle of a container.

A container’s configuration is specified as the config.json for the supported
platforms and details the fields that enable the creation of a container. The
execution environment is specified to ensure that applications running inside a
container have a consistent environment between runtimes along with common
actions defined for the container’s lifecycle.

Platforms

Platforms defined by this specification are:

• linux: runtime.md, config.md, features.md, config-linux.md, runtime-
linux.md, and features-linux.md.

• solaris: runtime.md, config.md, features.md, and config-solaris.md.
• windows: runtime.md, config.md, features.md, and config-windows.md.
• vm: runtime.md, config.md, features.md, and config-vm.md.
• zos: runtime.md, config.md, features.md, and config-zos.md.

Table of Contents

• Introduction

– Notational Conventions
– Container Principles

• Filesystem Bundle
• Runtime and Lifecycle

– Linux-specific Runtime and Lifecycle

• Configuration

1

runtime.md
config.md
features.md
config-linux.md
runtime-linux.md
runtime-linux.md
features-linux.md
runtime.md
config.md
features.md
config-solaris.md
runtime.md
config.md
features.md
config-windows.md
runtime.md
config.md
features.md
config-vm.md
runtime.md
config.md
features.md
config-zos.md
spec.md
principles.md
bundle.md
runtime.md
runtime-linux.md
config.md


– Linux-specific Configuration
– Solaris-specific Configuration
– Windows-specific Configuration
– Virtual-Machine-specific Configuration
– z/OS-specific Configuration

• Features Structure

– Linux-specific Features Structure

• Glossary

Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOM-
MENDED", "MAY", and "OPTIONAL" are to be interpreted as described in
[RFC 2119][rfc2119].

The key words "unspecified", "undefined", and "implementation-defined" are to
be interpreted as described in the [rationale for

The 5 principles of Standard Containers

Define a unit of software delivery called a Standard Container. The goal of a
Standard Container is to encapsulate a software component and all its depen-
dencies in a format that is self-describing and portable, so that any compliant
runtime can run it without extra dependencies, regardless of the underlying
machine and the contents of the container.

The specification for Standard Containers defines:

1. configuration file formats
2. a set of standard operations
3. an execution environment.

A great analogy for this is the physical shipping container used by the trans-
portation industry. Shipping containers are a fundamental unit of delivery, they
can be lifted, stacked, locked, loaded, unloaded and labelled. Irrespective of their
contents, by standardizing the container itself it allowed for a consistent, more
streamlined and efficient set of processes to be defined. For software Standard
Containers offer similar functionality by being the fundamental, standardized,
unit of delivery for a software package.

2

config-linux.md
config-solaris.md
config-windows.md
config-vm.md
config-zos.md
features.md
features-linux.md
glossary.md


1. Standard operations

Standard Containers define a set of STANDARD OPERATIONS. They can be
created, started, and stopped using standard container tools; copied and snap-
shotted using standard filesystem tools; and downloaded and uploaded using
standard network tools.

2. Content-agnostic

Standard Containers are CONTENT-AGNOSTIC: all standard operations have
the same effect regardless of the contents. They are started in the same way
whether they contain a postgres database, a php application with its dependen-
cies and application server, or Java build artifacts.

3. Infrastructure-agnostic

Standard Containers are INFRASTRUCTURE-AGNOSTIC: they can be run
in any OCI supported infrastructure. For example, a standard container can be
bundled on a laptop, uploaded to cloud storage, downloaded, run and snapshot-
ted by a build server at a fiber hotel in Virginia, uploaded to 10 staging servers in
a home-made private cloud cluster, then sent to 30 production instances across
3 public cloud regions.

4. Designed for automation

Standard Containers are DESIGNED FOR AUTOMATION: because they offer
the same standard operations regardless of content and infrastructure, Standard
Containers, are extremely well-suited for automation. In fact, you could say
automation is their secret weapon.

Many things that once required time-consuming and error-prone human effort
can now be programmed. Before Standard Containers, by the time a software
component ran in production, it had been individually built, configured, bun-
dled, documented, patched, vendored, templated, tweaked and instrumented by
10 different people on 10 different computers. Builds failed, libraries conflicted,
mirrors crashed, post-it notes were lost, logs were misplaced, cluster updates
were half-broken. The process was slow, inefficient and cost a fortune - and was
entirely different depending on the language and infrastructure provider.

5. Industrial-grade delivery

Standard Containers make INDUSTRIAL-GRADE DELIVERY of software a
reality. Leveraging all of the properties listed above, Standard Containers are

3



enabling large and small enterprises to streamline and automate their software
delivery pipelines. Whether it is in-house devOps flows, or external customer-
based software delivery mechanisms, Standard Containers are changing the way
the community thinks about software packaging and delivery.

Filesystem Bundle

Container Format

This section defines a format for encoding a container as a filesystem bundle - a
set of files organized in a certain way, and containing all the necessary data and
metadata for any compliant runtime to perform all standard operations against
it. See also MacOS application bundles for a similar use of the term bundle.

The definition of a bundle is only concerned with how a container, and its
configuration data, are stored on a local filesystem so that it can be consumed
by a compliant runtime.

A Standard Container bundle contains all the information needed to load and
run a container. This includes the following artifacts:

1. config.json: contains configuration data. This REQUIRED file
MUST reside in the root of the bundle directory and MUST be named
config.json. See config.json for more details.

2. container’s root filesystem: the directory referenced by root.path, if that
property is set in config.json.

When supplied, while these artifacts MUST all be present in a single directory
on the local filesystem, that directory itself is not part of the bundle. In other
words, a tar archive of a bundle will have these artifacts at the root of the
archive, not nested within a top-level directory.

Runtime and Lifecycle

Scope of a Container

The entity using a runtime to create a container MUST be able to use the
operations defined in this specification against that same container. Whether
other entities using the same, or other, instance of the runtime can see that
container is out of scope of this specification.

4

https://en.wikipedia.org/wiki/Bundle_%28macOS%29
config.md
config.md#root


State

The state of a container includes the following properties:

• ociVersion (string, REQUIRED) is version of the Open Container Ini-
tiative Runtime Specification with which the state complies.

• id (string, REQUIRED) is the container’s ID. This MUST be unique
across all containers on this host. There is no requirement that it be
unique across hosts.

• status (string, REQUIRED) is the runtime state of the container. The
value MAY be one of:

– creating: the container is being created (step 2 in the lifecycle)
– created: the runtime has finished the create operation (after step

2 in the lifecycle), and the container process has neither exited nor
executed the user-specified program

– running: the container process has executed the user-specified pro-
gram but has not exited (after step 8 in the lifecycle)

– stopped: the container process has exited (step 10 in the lifecycle)

Additional values MAY be defined by the runtime, however, they MUST
be used to represent new runtime states not defined above.

• pid (int, REQUIRED when status is created or running on Linux,
OPTIONAL on other platforms) is the ID of the container process. For
hooks executed in the runtime namespace, it is the pid as seen by the
runtime. For hooks executed in the container namespace, it is the pid as
seen by the container.

• bundle (string, REQUIRED) is the absolute path to the container’s bun-
dle directory. This is provided so that consumers can find the container’s
configuration and root filesystem on the host.

• annotations (map, OPTIONAL) contains the list of annotations associ-
ated with the container. If no annotations were provided then this prop-
erty MAY either be absent or an empty map.

The state MAY include additional properties.

When serialized in JSON, the format MUST adhere to the JSON Schema
schema/state-schema.json.

See Query State for information on retrieving the state of a container.

5

schema/state-schema.json


Example

{
"ociVersion": "0.2.0",
"id": "oci-container1",
"status": "running",
"pid": 4422,
"bundle": "/containers/redis",
"annotations": {

"myKey": "myValue"
}

}

Lifecycle

The lifecycle describes the timeline of events that happen from when a container
is created to when it ceases to exist.

1. OCI compliant runtime’s create command is invoked with a reference to
the location of the bundle and a unique identifier.

2. The container’s runtime environment MUST be created according to the
configuration in config.json. If the runtime is unable to create the envi-
ronment specified in the config.json, it MUST generate an error. While
the resources requested in the config.json MUST be created, the user-
specified program (from process) MUST NOT be run at this time. Any
updates to config.json after this step MUST NOT affect the container.

3. The prestart hooks MUST be invoked by the runtime. If any prestart
hook fails, the runtime MUST generate an error, stop the container, and
continue the lifecycle at step 12.

4. The createRuntime hooks MUST be invoked by the runtime. If any
createRuntime hook fails, the runtime MUST generate an error, stop the
container, and continue the lifecycle at step 12.

5. The createContainer hooks MUST be invoked by the runtime. If any
createContainer hook fails, the runtime MUST generate an error, stop
the container, and continue the lifecycle at step 12.

6. Runtime’s start command is invoked with the unique identifier of the
container.

7. The startContainer hooks MUST be invoked by the runtime. If any
startContainer hook fails, the runtime MUST generate an error, stop
the container, and continue the lifecycle at step 12.

8. The runtime MUST run the user-specified program, as specified by
process.

9. The poststart hooks MUST be invoked by the runtime. If any poststart
hook fails, the runtime MUST log a warning, but the remaining hooks and
lifecycle continue as if the hook had succeeded.

6

runtime.md#create
config.md
config.md
config.md
config.md#process
config.md
config.md#prestart
config.md#createRuntime-hooks
config.md#createContainer-hooks
runtime.md#start
config.md#startContainer-hooks
config.md#process
config.md#poststart


10. The container process exits. This MAY happen due to erroring out, exit-
ing, crashing or the runtime’s kill operation being invoked.

11. Runtime’s delete command is invoked with the unique identifier of the
container.

12. The container MUST be destroyed by undoing the steps performed during
create phase (step 2).

13. The poststop hooks MUST be invoked by the runtime. If any poststop
hook fails, the runtime MUST log a warning, but the remaining hooks and
lifecycle continue as if the hook had succeeded.

Errors

In cases where the specified operation generates an error, this specification does
not mandate how, or even if, that error is returned or exposed to the user of an
implementation. Unless otherwise stated, generating an error MUST leave the
state of the environment as if the operation were never attempted - modulo any
possible trivial ancillary changes such as logging.

Warnings

In cases where the specified operation logs a warning, this specification does not
mandate how, or even if, that warning is returned or exposed to the user of an
implementation. Unless otherwise stated, logging a warning does not change
the flow of the operation; it MUST continue as if the warning had not been
logged.

Operations

Unless otherwise stated, runtimes MUST support the following operations.

Note: these operations are not specifying any command-line APIs, and the
parameters are inputs for general operations.

Query State

state <container-id>

This operation MUST generate an error if it is not provided the ID of a container.
Attempting to query a container that does not exist MUST generate an error.
This operation MUST return the state of a container as specified in the State
section.

7

runtime.md#kill
runtime.md#delete
config.md#poststop


Create

create <container-id> <path-to-bundle>

This operation MUST generate an error if it is not provided a path to the bundle
and the container ID to associate with the container. If the ID provided is not
unique across all containers within the scope of the runtime, or is not valid in
any other way, the implementation MUST generate an error and a new container
MUST NOT be created. This operation MUST create a new container.
All of the properties configured in config.json except for process MUST be
applied. process.args MUST NOT be applied until triggered by the start
operation. The remaining process properties MAY be applied by this opera-
tion. If the runtime cannot apply a property as specified in the configuration,
it MUST generate an error and a new container MUST NOT be created.
The runtime MAY validate config.json against this spec, either generically
or with respect to the local system capabilities, before creating the container
(step 2). Runtime callers who are interested in pre-create validation can run
bundle-validation tools before invoking the create operation.
Any changes made to the config.json file after this operation will not have an
effect on the container.

Start

start <container-id>

This operation MUST generate an error if it is not provided the container ID.
Attempting to start a container that is not created MUST have no effect
on the container and MUST generate an error. This operation MUST run the
user-specified program as specified by process. This operation MUST generate
an error if process was not set.

Kill

kill <container-id> <signal>

This operation MUST generate an error if it is not provided the container ID.
Attempting to send a signal to a container that is

Linux Runtime

File descriptors

By default, only the stdin, stdout and stderr file descriptors are kept open
for the application by the runtime. The runtime MAY pass additional file de-

8

config.md
config.md#process
config.md#process
config.md
glossary.md#runtime-caller
implementations.md#testing--tools
config.md
config.md#process


scriptors to the application to support features such as socket activation. Some
of the file descriptors MAY be redirected to /dev/null even though they are
open.

Dev symbolic links

While creating the container (step 2 in the lifecycle), runtimes MUST create
the following symlinks if the source file exists after processing mounts:

Source Destination
/proc/self/fd /dev/fd
/proc/self/fd/0 /dev/stdin
/proc/self/fd/1 /dev/stdout
/proc/self/fd/2 /dev/stderr

Configuration

This configuration file contains metadata necessary to implement standard op-
erations against the container. This includes the process to run, environment
variables to inject, sandboxing features to use, etc.

The canonical schema is defined in this document, but there is a JSON Schema
in schema/config-schema.json and Go bindings in specs-go/config.go.
Platform-specific configuration schema are defined in the platform-specific
documents linked below. For properties that are only defined for some
platforms, the Go property has a platform tag listing those protocols (e.g.
platform:"linux,solaris").

Below is a detailed description of each field defined in the configuration format
and valid values are specified. Platform-specific fields are identified as such.
For all platform-specific configuration values, the scope defined below in the
Platform-specific configuration section applies.

Specification version

• ociVersion (string, REQUIRED) MUST be in [SemVer v2.0.0][semver-
v2.0.0] format and specifies the version of the Open Container Initiative
Runtime Specification with which the bundle complies. The Open Con-
tainer Initiative Runtime Specification follows semantic versioning and
retains forward and backward compatibility within major versions. For
example, if a configuration is compliant with version 1.1 of this specifi-
cation, it is compatible with all runtimes that support any 1.1 or later

9

http://0pointer.de/blog/projects/socket-activated-containers.html
runtime.md#lifecycle
config.md#mounts
runtime.md#operations
runtime.md#operations
schema/config-schema.json
specs-go/config.go
spec.md#platforms
spec.md#platforms


release of this specification, but is not compatible with a runtime that
supports 1.0 and not 1.1.

Example

"ociVersion": "0.1.0"

Root

root (object, OPTIONAL) specifies the container’s root filesystem. On Win-
dows, for Windows Server Containers, this field is REQUIRED. For Hyper-V
Containers, this field MUST NOT be set.
On all other platforms, this field is REQUIRED.

• path (string, REQUIRED) Specifies the path to the root filesystem for
the container.

– On Windows, path MUST be a [volume GUID path][naming-a-
volume].

– On POSIX platforms, path is either an absolute path or a relative
path to the bundle. For example, with a bundle at /to/bundle
and a root filesystem at /to/bundle/rootfs, the path value can be
either /to/bundle/rootfs or rootfs. The value SHOULD be the
conventional rootfs.

A directory MUST exist at the path declared by the field.

• readonly (bool, OPTIONAL) If true then the root filesystem MUST be
read-only inside the container, defaults to false.

– On Windows, this field MUST be omitted or false.

Example (POSIX platforms)

"root": {
"path": "rootfs",
"readonly": true

}

Example (Windows)

"root": {
"path": "\\\\?\\Volume{ec84d99e-3f02-11e7-ac6c-00155d7682cf}\\"

}

10

config-windows.md#hyperv
config-windows.md#hyperv


Mounts

mounts (array of objects, OPTIONAL) specifies additional mounts beyond root.
The runtime MUST mount entries in the listed order. For Linux, the parameters
are as documented in mount(2) system call man page. For Solaris, the mount
entry corresponds to the ’fs’ resource in the [zonecfg(1M)][zonecfg.1m] man page.

• destination (string, REQUIRED) Destination of mount point: path in-
side container. This value MUST be an absolute path.

– Windows: one mount destination MUST NOT be nested within an-
other mount (e.g., c:\foo and c:\foo\bar).

– Solaris: corresponds to "dir" of the fs resource in [zonecfg(1M)][zonecfg.1m].

• source (string, OPTIONAL) A device name, but can also be a file or
directory name for bind mounts or a dummy. Path values for bind mounts
are either absolute or relative to the bundle. A mount is a bind mount if
it has either bind or rbind in the options.

– Windows: a local directory on the filesystem of the container host.
UNC paths and mapped drives are not supported.

– Solaris: corresponds to "special" of the fs resource in [zonecfg(1M)][zonecfg.1m].

• options (array of strings, OPTIONAL) Mount options of the filesystem
to be used.

– Linux: See Linux mount options below.
– Solaris: corresponds to "options" of the fs resource in [zonecfg(1M)][zonecfg.1m].
– Windows: runtimes MUST support ro, mounting the filesystem read-

only when ro is given.

Linux mount options

Runtimes MUST/SHOULD/MAY implement the following option strings for
Linux:

Option name Requirement Description
async MUST [ˆ1]
atime MUST [ˆ1]
bind MUST [ˆ2] (bind mounts)
defaults MUST [ˆ1]
dev MUST [ˆ1]
diratime MUST [ˆ1]
dirsync MUST [ˆ1]
exec MUST [ˆ1]
iversion MUST [ˆ1]
lazytime MUST [ˆ1]

11

https://man7.org/linux/man-pages/man2/mount.2.html


Option name Requirement Description
loud MUST [ˆ1]
mand MAY [ˆ1] (Deprecated in kernel 5.15, util-linux 2.38)
noatime MUST [ˆ1]
nodev MUST [ˆ1]
nodiratime MUST [ˆ1]
noexec MUST [ˆ1]
noiversion MUST [ˆ1]
nolazytime MUST [ˆ1]
nomand MAY [ˆ1]
norelatime MUST [ˆ1]
nostrictatime MUST [ˆ1]
nosuid MUST [ˆ1]
nosymfollow SHOULD [ˆ1] (Introduced in kernel 5.10, util-linux 2.38)
private MUST [ˆ2] (bind mounts)
ratime SHOULD Recursive atime [ˆ3]
rbind MUST [ˆ2] (bind mounts)
rdev SHOULD Recursive dev [ˆ3]
rdiratime SHOULD Recursive diratime [ˆ3]
relatime MUST [ˆ1]
remount MUST [ˆ1]
rexec SHOULD Recursive dev [ˆ3]
rnoatime SHOULD Recursive noatime [ˆ3]
rnodiratime SHOULD Recursive nodiratime [ˆ3]
rnoexec SHOULD Recursive noexec [ˆ3]
rnorelatime SHOULD Recursive norelatime [ˆ3]
rnostrictatime SHOULD Recursive nostrictatime [ˆ3]
rnosuid SHOULD Recursive nosuid [ˆ3]
rnosymfollow SHOULD Recursive nosymfollow [ˆ3]
ro MUST [ˆ1]
rprivate MUST [ˆ2] (bind mounts)
rrelatime SHOULD Recursive relatime [ˆ3]
rro SHOULD Recursive ro [ˆ3]
rrw SHOULD Recursive rw [ˆ3]
rshared MUST [ˆ2] (bind mounts)
rslave MUST [ˆ2] (bind mounts)
rstrictatime SHOULD Recursive strictatime [ˆ3]
rsuid SHOULD Recursive suid [ˆ3]
rsymfollow SHOULD Recursive symfollow [ˆ3]
runbindable MUST [ˆ2] (bind mounts)
rw MUST [ˆ1]
shared MUST [ˆ1]
silent MUST [ˆ1]
slave MUST [ˆ2] (bind mounts)
strictatime MUST [ˆ1]

12



Option name Requirement Description
suid MUST [ˆ1]
symfollow SHOULD Opposite of nosymfollow
sync MUST [ˆ1]
tmpcopyup MAY copy up the contents to a tmpfs
unbindable MUST [ˆ2] (bind mounts)

[ˆ1]: Corresponds to [mount(8) (filesystem-independent)][mount.8-filesystem-
independent]. [ˆ2]: Corresponds to [mount(8) (filesystem-specific)][mount.8-
filesystem-specific]. [ˆ3]: These AT_RECURSIVE options need kernel 5.12 or later.
See [mount_setattr(2)][mount_setattr.2]

The "MUST" options correspond to [mount(8)][mount.8].

Runtimes MAY also implement custom option strings that are not listed
in the table above. If a custom option string is already recognized
by [mount(8)][mount.8], the runtime SHOULD follow the behavior of
[mount(8)][mount.8].

Runtimes SHOULD pass unknown options to mount(2) via the fifth argument
(const void *data).

Example (Windows)

"mounts": [
{

"destination": "C:\\folder-inside-container",
"source": "C:\\folder-on-host",
"options": ["ro"]

}
]

POSIX-platform Mounts

For POSIX platforms the mounts structure has the following fields:

• type (string, OPTIONAL) The type of the filesystem to be mounted.

– Linux: filesystem types supported by the kernel as listed in
/proc/filesystems (e.g., "minix", "ext2", "ext3", "jfs", "xfs", "reiserfs",
"msdos", "proc", "nfs", "iso9660"). For bind mounts (when options
include either bind or rbind), the type is a dummy, often "none"
(not listed in /proc/filesystems).

– Solaris: corresponds to "type" of the fs resource in [zonecfg(1M)][zonecfg.1m].

13

https://man7.org/linux/man-pages/man2/mount.2.html


• uidMappings (array of type LinuxIDMapping, OPTIONAL) The mapping
to convert UIDs from the source file system to the destination mount point.
The format is the same as user namespace mappings.

• gidMappings (array of type LinuxIDMapping, OPTIONAL) The mapping
to convert GIDs from the source file system to the destination mount point.
For more details see uidMappings.

Example (Linux)

"mounts": [
{

"destination": "/tmp",
"type": "tmpfs",
"source": "tmpfs",
"options": ["nosuid","strictatime","mode=755","size=65536k"]

},
{

"destination": "/data",
"type": "none",
"source": "/volumes/testing",
"options": ["rbind","rw"]

}
]

Example (Solaris)

"mounts": [
{

"destination": "/opt/local",
"type": "lofs",
"source": "/usr/local",
"options": ["ro","nodevices"]

},
{

"destination": "/opt/sfw",
"type": "lofs",
"source": "/opt/sfw"

}
]

Process

process (object, OPTIONAL) specifies the container process. This property is
REQUIRED when start is called.

14

config-linux.md#user-namespace-mappings
runtime.md#start


• terminal (bool, OPTIONAL) specifies whether a terminal is attached to
the process, defaults to false. As an example, if set to true on Linux a
pseudoterminal pair is allocated for the process and the pseudoterminal
pty is duplicated on the process’s [standard streams][stdin.3].

• consoleSize (object, OPTIONAL) specifies the console size in characters
of the terminal. Runtimes MUST ignore consoleSize if terminal is
false or unset.

– height (uint, REQUIRED)
– width (uint, REQUIRED)

• cwd (string, REQUIRED) is the working directory that will be set for the
executable. This value MUST be an absolute path.

• env (array of strings, OPTIONAL) with the same semantics as [IEEE Std
1003.1-2008’s environ][ieee-1003.1-2008-xbd-c8.1].

• args (array of strings, OPTIONAL) with similar semantics to [IEEE Std
1003.1-2008 execvp’s argv][ieee-1003.1-2008-functions-exec]. This spec-
ification extends the IEEE standard in that at least one entry is RE-
QUIRED (non-Windows), and that entry is used with the same semantics
as execvp’s file. This field is OPTIONAL on Windows, and commandLine
is REQUIRED if this field is omitted.

• commandLine (string, OPTIONAL) specifies the full command line to be
executed on Windows. This is the preferred means of supplying the com-
mand line on Windows. If omitted, the runtime will fall back to escaping
and concatenating fields from args before making the system call into
Windows.

POSIX process

For systems that support POSIX rlimits (for example Linux and Solaris), the
process object supports the following process-specific properties:

• rlimits (array of objects, OPTIONAL) allows setting resource limits for
the process. Each entry has the following structure:

– type (string, REQUIRED) the platform resource being limited.
∗ Linux: valid values are defined in the [getrlimit(2)][getrlimit.2]
man page, such as RLIMIT_MSGQUEUE.

∗ Solaris: valid values are defined in the [getrlimit(3)][getrlimit.3]
man page, such as RLIMIT_CORE.

The runtime MUST generate an error for any values which can-
not be mapped to a relevant kernel interface. For each entry in
rlimits, a [getrlimit(3)][getrlimit.3] on type MUST succeed. For
the following properties, rlim refers to the status returned by the
getrlimit(3) call.

15

runtime.md#errors


– soft (uint64, REQUIRED) the value of the limit enforced for the
corresponding resource. rlim.rlim_cur MUST match the config-
ured value.

– hard (uint64, REQUIRED) the ceiling for the soft limit that could
be set by an unprivileged process. rlim.rlim_max MUST match
the configured value. Only a privileged process (e.g. one with the
CAP_SYS_RESOURCE capability) can raise a hard limit.

If rlimits contains duplicated entries with same type, the runtime MUST
generate an error.

Linux Process

For Linux-based systems, the process object supports the following process-
specific properties.

• apparmorProfile (string, OPTIONAL) specifies the name of the AppAr-
mor profile for the process. For more information about AppArmor, see
[AppArmor documentation][apparmor].

• capabilities (object, OPTIONAL) is an object containing arrays that
specifies the sets of capabilities for the process. Valid values are defined
in the [capabilities(7)][capabilities.7] man page, such as CAP_CHOWN. Any
value which cannot be mapped to a relevant kernel interface, or cannot be
granted otherwise MUST be logged as a warning by the runtime. Runtimes
SHOULD NOT fail if the container configuration requests capabilities that
cannot be granted, for example, if the runtime operates in a restricted
environment with a limited set of capabilities. capabilities contains
the following properties:

– effective (array of strings, OPTIONAL) the effective field is an
array of effective capabilities that are kept for the process.

– bounding (array of strings, OPTIONAL) the bounding field is an
array of bounding capabilities that are kept for the process.

– inheritable (array of strings, OPTIONAL) the inheritable field
is an array of inheritable capabilities that are kept for the process.

– permitted (array of strings, OPTIONAL) the permitted field is an
array of permitted capabilities that are kept for the process.

– ambient (array of strings, OPTIONAL) the ambient field is an array
of ambient capabilities that are kept for the process.

• noNewPrivileges (bool, OPTIONAL) setting noNewPrivileges to true
prevents the process from gaining additional privileges. As an example,
the [no_new_privs][no-new-privs] article in the kernel documentation has
information on how this is achieved using a prctl system call on Linux.

16

runtime.md#errors
runtime.md#warnings


• oomScoreAdj (int, OPTIONAL) adjusts the oom-killer score in
[pid]/oom_score_adj for the process’s [pid] in a [proc pseudo-
filesystem][proc_2]. If oomScoreAdj is set, the runtime MUST set
oom_score_adj to the given value. If oomScoreAdj is not set, the
runtime MUST NOT change the value of oom_score_adj.
This is a per-process setting, where as disableOOMKiller is scoped
for a memory cgroup. For more information on how these two settings
work together, see [the memory cgroup documentation section 10. OOM
Contol][cgroup-v1-memory_2].

• scheduler (object, OPTIONAL) is an object describing the scheduler
properties for the process. The scheduler contains the following proper-
ties:

– policy (string, REQUIRED) represents the scheduling policy. A
valid list of values is:

∗ SCHED_OTHER
∗ SCHED_FIFO
∗ SCHED_RR
∗ SCHED_BATCH
∗ SCHED_ISO
∗ SCHED_IDLE
∗ SCHED_DEADLINE

– nice (int32, OPTIONAL) is the nice value for the process, affecting
its priority. A lower nice value corresponds to a higher priority. If
not set, the runtime must use the value 0.

– priority (int32, OPTIONAL) represents the static priority of
the process, used by real-time policies like SCHED_FIFO and
SCHED_RR. If not set, the runtime must use the value 0.

– flags (array of strings, OPTIONAL) is an array of strings repre-
senting scheduling flags. A valid list of values is:

∗ SCHED_FLAG_RESET_ON_FORK
∗ SCHED_FLAG_RECLAIM
∗ SCHED_FLAG_DL_OVERRUN
∗ SCHED_FLAG_KEEP_POLICY
∗ SCHED_FLAG_KEEP_PARAMS
∗ SCHED_FLAG_UTIL_CLAMP_MIN
∗ SCHED_FLAG_UTIL_CLAMP_MAX

– runtime (uint64, OPTIONAL) represents the amount of time in
nanoseconds during which the process is allowed to run in a given
period, used by the deadline scheduler. If not set, the runtime must
use the value 0.

– deadline (uint64, OPTIONAL) represents the absolute deadline for
the process to complete its execution, used by the deadline scheduler.
If not set, the runtime must use the value 0.

17

config-linux.md#memory


– period (uint64, OPTIONAL) represents the length of the period in
nanoseconds used for determining the process runtime, used by the
deadline scheduler. If not set, the runtime must use the value 0.

• selinuxLabel (string, OPTIONAL) specifies the SELinux label for the
process. For more information about SELinux, see [SELinux documenta-
tion][selinux].

• ioPriority (object, OPTIONAL) configures the I/O priority settings for
the container’s processes within the process group. The I/O priority set-
tings will be automatically applied to the entire process group, affecting
all processes within the container. The following properties are available:

– class (string, REQUIRED) specifies the I/O scheduling class.
Possible values are IOPRIO_CLASS_RT, IOPRIO_CLASS_BE, and
IOPRIO_CLASS_IDLE.

– priority (int, REQUIRED) specifies the priority level within the
class. The value should be an integer ranging from 0 (highest) to 7
(lowest).

User

The user for the process is a platform-specific structure that allows specific
control over which user the process runs as.

POSIX-platform User For POSIX platforms the user structure has the
following fields:

• uid (int, REQUIRED) specifies the user ID in the container namespace.
• gid (int, REQUIRED) specifies the group ID in the container namespace.
• umask (int, OPTIONAL) specifies the [umask][umask_2] of the user. If

unspecified, the umask should not be changed from the calling process’
umask.

• additionalGids (array of ints, OPTIONAL) specifies additional group
IDs in the container namespace to be added to the process.

Note: symbolic name for uid and gid, such as uname and gname respectively,
are left to upper levels to derive (i.e. /etc/passwd parsing, NSS, etc)

Example (Linux)

"process": {
"terminal": true,
"consoleSize": {

18

glossary.md#container-namespace
glossary.md#container-namespace
glossary.md#container-namespace


"height": 25,
"width": 80

},
"user": {

"uid": 1,
"gid": 1,
"umask": 63,
"additionalGids": [5, 6]

},
"env": [

"PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
"TERM=xterm"

],
"cwd": "/root",
"args": [

"sh"
],
"apparmorProfile": "acme_secure_profile",
"selinuxLabel": "system_u:system_r:svirt_lxc_net_t:s0:c124,c675",
"ioPriority": {

"class": "IOPRIO_CLASS_IDLE",
"priority": 4

},
"noNewPrivileges": true,
"capabilities": {

"bounding": [
"CAP_AUDIT_WRITE",
"CAP_KILL",
"CAP_NET_BIND_SERVICE"

],
"permitted": [

"CAP_AUDIT_WRITE",
"CAP_KILL",
"CAP_NET_BIND_SERVICE"

],
"inheritable": [

"CAP_AUDIT_WRITE",
"CAP_KILL",
"CAP_NET_BIND_SERVICE"

],
"effective": [

"CAP_AUDIT_WRITE",
"CAP_KILL"

],
"ambient": [

"CAP_NET_BIND_SERVICE"

19



]
},
"rlimits": [

{
"type": "RLIMIT_NOFILE",
"hard": 1024,
"soft": 1024

}
]

}

Example (Solaris)

"process": {
"terminal": true,
"consoleSize": {

"height": 25,
"width": 80

},
"user": {

"uid": 1,
"gid": 1,
"umask": 7,
"additionalGids": [2, 8]

},
"env": [

"PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
"TERM=xterm"

],
"cwd": "/root",
"args": [

"/usr/bin/bash"
]

}

Windows User For Windows based systems the user structure has the fol-
lowing fields:

• username (string, OPTIONAL) specifies the user name for the process.

Example (Windows)

"process": {
"terminal": true,

20



"user": {
"username": "containeradministrator"

},
"env": [

"VARIABLE=1"
],
"cwd": "c:\\foo",
"args": [

"someapp.exe",
]

}

Hostname

• hostname (string, OPTIONAL) specifies the container’s hostname as seen
by processes running inside the container. On Linux, for example, this will
change the hostname in the container [UTS namespace][uts-namespace.7].
Depending on your namespace configuration, the container UTS names-
pace may be the runtime [UTS namespace][uts-namespace.7].

Example

"hostname": "mrsdalloway"

Domainname

• domainname (string, OPTIONAL) specifies the container’s domainname
as seen by processes running inside the container. On Linux, for example,
this will change the domainname in the container [UTS namespace][uts-
namespace.7]. Depending on your namespace configuration, the container
UTS namespace may be the runtime [UTS namespace][uts-namespace.7].

Example

"domainname": "foobarbaz.test"

Platform-specific configuration

• linux (object, OPTIONAL) Linux-specific configuration. This MAY be
set if the target platform of this spec is linux.

• windows (object, OPTIONAL) Windows-specific configuration. This
MUST be set if the target platform of this spec is windows.

21

glossary.md#container-namespace
config-linux.md#namespaces
glossary.md#runtime-namespace
glossary.md#container-namespace
config-linux.md#namespaces
glossary.md#runtime-namespace
config-linux.md
config-windows.md


• solaris (object, OPTIONAL) Solaris-specific configuration. This MAY
be set if the target platform of this spec is solaris.

• vm (object, OPTIONAL) Virtual-machine-specific configuration. This
MAY be set if the target platform and architecture of this spec support
hardware virtualization.

• zos (object, OPTIONAL) z/OS-specific configuration. This MAY be set
if the target platform of this spec is zos.

Example (Linux)

{
"linux": {

"namespaces": [
{

"type": "pid"
}

]
}

}

POSIX-platform Hooks

For POSIX platforms, the configuration structure supports hooks for configur-
ing custom actions related to the lifecycle of the container.

• hooks (object, OPTIONAL) MAY contain any of the following properties:

– prestart (array of objects, OPTIONAL, DEPRECATED) is an
array of prestart hooks.

∗ Entries in the array contain the following properties:
· path (string, REQUIRED) with similar semantics to [IEEE

Std 1003.1-2008 execv’s path][ieee-1003.1-2008-functions-
exec]. This specification extends the IEEE standard in that
path MUST be absolute.

· args (array of strings, OPTIONAL) with the same seman-
tics as [IEEE Std 1003.1-2008 execv’s argv][ieee-1003.1-2008-
functions-exec].

· env (array of strings, OPTIONAL) with the same semantics
as [IEEE Std 1003.1-2008’s environ][ieee-1003.1-2008-xbd-
c8.1].

· timeout (int, OPTIONAL) is the number of seconds before
aborting the hook. If set, timeout MUST be greater than
zero.

∗ The value of path MUST resolve in the runtime namespace.

22

config-solaris.md
config-vm.md
config-zos.md
runtime.md#lifecycle
glossary.md#runtime-namespace


∗ The prestart hooks MUST be executed in the runtime names-
pace.

– createRuntime (array of objects, OPTIONAL) is an array of
createRuntime hooks.

∗ Entries in the array contain the following properties (the entries
are identical to the entries in the deprecated prestart hooks):
· path (string, REQUIRED) with similar semantics to [IEEE

Std 1003.1-2008 execv’s path][ieee-1003.1-2008-functions-
exec]. This specification extends the IEEE standard in that
path MUST be absolute.

· args (array of strings, OPTIONAL) with the same seman-
tics as [IEEE Std 1003.1-2008 execv’s argv][ieee-1003.1-2008-
functions-exec].

· env (array of strings, OPTIONAL) with the same semantics
as [IEEE Std 1003.1-2008’s environ][ieee-1003.1-2008-xbd-
c8.1].

· timeout (int, OPTIONAL) is the number of seconds before
aborting the hook. If set, timeout MUST be greater than
zero.

∗ The value of path MUST resolve in the runtime namespace.
∗ The createRuntime hooks MUST be executed in the runtime
namespace.

– createContainer (array of objects, OPTIONAL) is an array of
createContainer hooks.

∗ Entries in the array have the same schema as createRuntime
entries.

∗ The value of path MUST resolve in the runtime namespace.
∗ The createContainer hooks MUST be executed in the container
namespace.

– startContainer (array of objects, OPTIONAL) is an array of
startContainer hooks.

∗ Entries in the array have the same schema as createRuntime
entries.

∗ The value of path MUST resolve in the container namespace.
∗ The startContainer hooks MUST be executed in the container
namespace.

– poststart (array of objects, OPTIONAL) is an array of poststart
hooks.

∗ Entries in the array have the same schema as createRuntime
entries.

∗ The value of path MUST resolve in the runtime namespace.
∗ The poststart hooks MUST be executed in the runtime names-

pace.

23

glossary.md#runtime-namespace
glossary.md#runtime-namespace
glossary.md#runtime-namespace
glossary.md#runtime-namespace
glossary.md#runtime-namespace
glossary.md#runtime-namespace
glossary.md#container-namespace
glossary.md#container-namespace
glossary.md#container-namespace
glossary.md#container-namespace
glossary.md#container-namespace
glossary.md#runtime-namespace
glossary.md#runtime-namespace
glossary.md#runtime-namespace


– poststop (array of objects, OPTIONAL) is an array of poststop
hooks.

∗ Entries in the array have the same schema as createRuntime
entries.

∗ The value of path MUST resolve in the runtime namespace.
∗ The poststop hooks MUST be executed in the runtime names-
pace.

Hooks allow users to specify programs to run before or after various lifecycle
events. Hooks MUST be called in the listed order. The state of the container
MUST be passed to hooks over stdin so that they may do work appropriate to
the current state of the container.

Prestart

The prestart hooks MUST be called as part of the create operation after
the runtime environment has been created (according to the configuration in
config.json) but before the pivot_root or any equivalent operation has been
executed. On Linux, for example, they are called after the container namespaces
are created, so they provide an opportunity to customize the container (e.g. the
network namespace could be specified in this hook). The prestart hooks MUST
be called before the createRuntime hooks.

Note: prestart hooks were deprecated in favor of createRuntime,
createContainer and startContainer hooks, which allow more granu-
lar hook control during the create and start phase.

The prestart hooks’ path MUST resolve in the runtime namespace. The
prestart hooks MUST be executed in the runtime namespace.

CreateRuntime Hooks

The createRuntime hooks MUST be called as part of the create operation
after the runtime environment has been created (according to the configuration
in config.json) but before the pivot_root or any equivalent operation has been
executed.

The createRuntime hooks’ path MUST resolve in the runtime namespace. The
createRuntime hooks MUST be executed in the runtime namespace.

On Linux, for example, they are called after the container namespaces are cre-
ated, so they provide an opportunity to customize the container (e.g. the net-
work namespace could be specified in this hook).

The definition of createRuntime hooks is currently underspecified and hooks
authors, should only expect from the runtime that the mount namespace have

24

glossary.md#runtime-namespace
glossary.md#runtime-namespace
glossary.md#runtime-namespace
runtime.md#state
runtime.md#create
glossary.md#runtime-namespace
glossary.md#runtime-namespace
runtime.md#create
glossary.md#runtime-namespace
glossary.md#runtime-namespace


been created and the mount operations performed. Other operations such as
cgroups and SELinux/AppArmor labels might not have been performed by the
runtime.

CreateContainer Hooks

The createContainer hooks MUST be called as part of the create opera-
tion after the runtime environment has been created (according to the config-
uration in config.json) but before the pivot_root or any equivalent operation
has been executed. The createContainer hooks MUST be called after the
createRuntime hooks.

The createContainer hooks’ path MUST resolve in the runtime namespace.
The createContainer hooks MUS

Linux Container Configuration

This document describes the schema for the Linux-specific section of the con-
tainer configuration. The Linux container specification uses various kernel fea-
tures like namespaces, cgroups, capabilities, LSM, and filesystem jails to fulfill
the spec.

Default Filesystems

The Linux ABI includes both syscalls and several special file paths. Applications
expecting a Linux environment will very likely expect these file paths to be set
up correctly.

The following filesystems SHOULD be made available in each container’s filesys-
tem:

Path Type
/proc [proc][]
/sys [sysfs][]
/dev/pts [devpts][]
/dev/shm [tmpfs][]

Namespaces

A namespace wraps a global system resource in an abstraction that makes it
appear to the processes within the namespace that they have their own isolated
instance of the global resource. Changes to the global resource are visible to

25

runtime.md#create
glossary.md#runtime-namespace
config.md#platform-specific-configuration
config.md
config.md


other processes that are members of the namespace, but are invisible to other
processes. For more information, see the [namespaces(7)][namespaces.7_2] man
page.

Namespaces are specified as an array of entries inside the namespaces root field.
The following parameters can be specified to set up namespaces:

• type (string, REQUIRED) - namespace type. The following namespace
types SHOULD be supported:

– pid processes inside the container will only be able to see other pro-
cesses inside the same container or inside the same pid namespace.

– network the container will have its own network stack.
– mount the container will have an isolated mount table.
– ipc processes inside the container will only be able to communicate

to other processes inside the same container via system level IPC.
– uts the container will be able to have its own hostname and domain

name.
– user the container will be able to remap user and group IDs from

the host to local users and groups within the container.
– cgroup the container will have an isolated view of the cgroup hier-

archy.
– time the container will be able to have its own clocks.

• path (string, OPTIONAL) - namespace file. This value MUST be an
absolute path in the runtime mount namespace. The runtime MUST
place the container process in the namespace associated with that path.
The runtime MUST generate an error if path is not associated with a
namespace of type type.
If path is not specified, the runtime MUST create a new container names-
pace of type type.

If a namespace type is not specified in the namespaces array, the container
MUST inherit the runtime namespace of that type. If a namespaces field con-
tains duplicated namespaces with same type, the runtime MUST generate an
error.

Example

"namespaces": [
{

"type": "pid",
"path": "/proc/1234/ns/pid"

},
{

26

glossary.md#runtime-namespace
runtime.md#errors
glossary.md#container-namespace
glossary.md#container-namespace
glossary.md#runtime-namespace
runtime.md#errors
runtime.md#errors


"type": "network",
"path": "/var/run/netns/neta"

},
{

"type": "mount"
},
{

"type": "ipc"
},
{

"type": "uts"
},
{

"type": "user"
},
{

"type": "cgroup"
},
{

"type": "time"
}

]

User namespace mappings

uidMappings (array of objects, OPTIONAL) describes the user namespace uid
mappings from the host to the container. gidMappings (array of objects, OP-
TIONAL) describes the user namespace gid mappings from the host to the
container.

Each entry has the following structure:

• containerID (uint32, REQUIRED) - is the starting uid/gid in the con-
tainer.

• hostID (uint32, REQUIRED) - is the starting uid/gid on the host to be
mapped to containerID.

• size (uint32, REQUIRED) - is the number of ids to be mapped.

The runtime SHOULD NOT modify the ownership of referenced filesystems to
realize the mapping. Note that the number of mapping entries MAY be limited
by the [kernel][user-namespaces].

27



Example

"uidMappings": [
{

"containerID": 0,
"hostID": 1000,
"size": 32000

}
],
"gidMappings": [

{
"containerID": 0,
"hostID": 1000,
"size": 32000

}
]

Offset for Time Namespace

timeOffsets (object, OPTIONAL) sets the offset for Time Namespace. For
more information see the [time_namespaces][time_namespaces.7].

The name of the clock is the entry key. Entry values are objects with the
following properties:

• secs (int64, OPTIONAL) - is the offset of clock (in seconds) in the con-
tainer.

• nanosecs (uint32, OPTIONAL) - is the offset of clock (in nanoseconds)
in the container.

Devices

devices (array of objects, OPTIONAL) lists devices that MUST be avail-
able in the container. The runtime MAY supply them however it likes (with
[mknod][mknod.2], by bind mounting from the runtime mount namespace, using
symlinks, etc.).

Each entry has the following structure:

• type (string, REQUIRED) - type of device: c, b, u or p. More info in
[mknod(1)][mknod.1].

• path (string, REQUIRED) - full path to device inside container. If a
[file][] already exists at path that does not match the requested device,
the runtime MUST generate an error. The path MAY be anywhere in the
container filesystem, notably outside of /dev.

28



• major, minor (int64, REQUIRED unless type is p) - [major, minor num-
bers][devices] for the device.

• fileMode (uint32, OPTIONAL) - file mode for the device. You can also
control access to devices with cgroups.

• uid (uint32, OPTIONAL) - id of device owner in the container namespace.
• gid (uint32, OPTIONAL) - id of device group in the container namespace.

The same type, major and minor SHOULD NOT be used for multiple devices.

Containers MAY NOT access any device node that is not either explicitly ref-
erenced in the devices array or listed as being part of the default devices.
Rationale: runtimes based on virtual machines need to be able to adjust the
node devices, and accessing device nodes that were not adjusted could have
undefined behaviour.

Example

"devices": [
{

"path": "/dev/fuse",
"type": "c",
"major": 10,
"minor": 229,
"fileMode": 438,
"uid": 0,
"gid": 0

},
{

"path": "/dev/sda",
"type": "b",
"major": 8,
"minor": 0,
"fileMode": 432,
"uid": 0,
"gid": 0

}
]

Default Devices

In addition to any devices configured with this setting, the runtime MUST also
supply:

• [/dev/null][null.4]

29

glossary.md#container-namespace
glossary.md#container-namespace


• [/dev/zero][zero.4]
• [/dev/full][full.4]
• [/dev/random][random.4]
• [/dev/urandom][random.4]
• [/dev/tty][tty.4]
• /dev/console is set up if terminal is enabled in the config by bind mount-

ing the pseudoterminal pty to /dev/console.
• [/dev/ptmx][pts.4]. A [bind-mount or symlink of the container’s

/dev/pts/ptmx][devpts].

Control groups

Also known as cgroups, they are used to restrict resource usage for a container
and handle device access. cgroups provide controls (through controllers) to
restrict cpu, memory, IO, pids, network and RDMA resources for the container.
For more information, see the [kernel cgroups documentation][cgroup-v1].

A runtime MAY, during a particular container operation, such as create, start,
or exec, check if the container cgroup is fit for purpose, and MUST generate an
error if such a check fails. For example, a frozen cgroup or (for create opera-
tion) a non-empty cgroup. The reason for this is that accepting such configura-
tions could cause container operation outcomes that users may not anticipate
or understand, such as operation on one container inadvertently affecting other
containers.

Cgroups Path

cgroupsPath (string, OPTIONAL) path to the cgroups. It can be used to
either control the cgroups hierarchy for containers or to run a new process in
an existing container.

The value of cgroupsPath MUST be either an absolute path or a relative path.

• In the case of an absolute path (starting with /), the runtime MUST take
the path to be relative to the cgroups mount point.

• In the case of a relative path (not starting with /), the runtime MAY
interpret the path relative to a runtime-determined location in the cgroups
hierarchy.

If the value is specified, the runtime MUST consistently attach to the same place
in the cgroups hierarchy given the same value of cgroupsPath. If the value is
not specified, the runtime MAY define the default cgroups path. Runtimes MAY
consider certain cgroupsPath values to be invalid, and MUST generate an error
if this is the case.

30

config.md#process
runtime.md#operation
runtime.md#create
runtime.md#start
runtime.md#exec
runtime.md#errors
runtime.md#errors
runtime.md#create


Implementations of the Spec can choose to name cgroups in any manner.
The Spec does not include naming schema for cgroups. The Spec does
not support per-controller paths for the reasons discussed in the [cgroupv2
documentation][cgroup-v2]. The cgroups will be created if they don’t exist.

You can configure a container’s cgroups via the resources field of the Linux
configuration. Do not specify resources unless limits have to be updated. For
example, to run a new process in an existing container without updating limits,
resources need not be specified.

Runtimes MAY attach the container process to additional cgroup controllers
beyond those necessary to fulfill the resources settings.

Cgroup ownership

Runtimes MAY, according to the following rules, change (or cause to be
changed) the owner of the container’s cgroup to the host uid that maps to the
value of process.user.uid in the container namespace; that is, the user that
will execute the container process.

Runtimes SHOULD NOT change the ownership of container cgroups when
cgroups v1 is in use. Cgroup delegation is not secure in cgroups v1.

A runtime SHOULD NOT change the ownership of a container cgroup unless
it will also create a new cgroup namespace for the container. Typically this
occurs when the linux.namespaces array contains an object with type equal
to "cgroup" and path unset.

Runtimes SHOULD change the cgroup ownership if and only if the cgroup
filesystem is to be mounted read/write; that is, when the configuration’s mounts
array contains an object where:

• The source field is equal to "cgroup"
• The destination field is equal to "/sys/fs/cgroup"
• The options field does not contain the value "ro"

If the configuration does not specify such a mount, the runtime SHOULD NOT
change the cgroup ownership.

A runtime that changes the cgroup ownership SHOULD only change the own-
ership of the container’s cgroup directory and files within that directory that
are listed in /sys/kernel/cgroup/delegate. See cgroups(7) for details about
this file. Note that not all files listed in /sys/kernel/cgroup/delegate nec-
essarily exist in every cgroup. Runtimes MUST NOT fail in this scenario, and
SHOULD change the ownership of the listed files that do exist in the cgroup.

If the /sys/kernel/cgroup/delegate file does not exist, the runtime MUST
fall back to using the following list of files:

31

glossary.md#container-namespace


cgroup.procs
cgroup.subtree_control
cgroup.threads

The runtime SHOULD NOT change the ownership of any other files. Changing
other files may allow the container to elevate its own resource limits or perform
other unwanted behaviour.

Example

"cgroupsPath": "/myRuntime/myContainer",
"resources": {

"memory": {
"limit": 100000,
"reservation": 200000
},
"devices": [

{
"allow": false,
"access": "rwm"

}
]

}

Allowed Device list

devices (array of objects, OPTIONAL) configures the [allowed device
list][cgroup-v1-devices]. The runtime MUST apply entries in the listed order.

Each entry has the following structure:

• allow (boolean, REQUIRED) - whether the entry is allowed or denied.
• type (string, OPTIONAL) - type of device: a (all), c (char), or b (block).

Unset values mean "all", mapping to a.
• major, minor (int64, OPTIONAL) - [major, minor numbers][devices] for

the device. Unset values mean "all", mapping to [* in the filesystem
API][cgroup-v1-devices].

• access (string, OPTIONAL) - cgroup permissions for device. A compo-
sition of r (read), w (write), and m (mknod).

Example

"devices": [
{

32



"allow": false,
"access": "rwm"

},
{

"allow": true,
"type": "c",
"major": 10,
"minor": 229,
"access": "rw"

},
{

"allow": true,
"type": "b",
"major": 8,
"minor": 0,
"access": "r"

}
]

Memory

memory (object, OPTIONAL) represents the cgroup subsystem memory and it’s
used to set limits on the container’s memory usage. For more information, see
the kernel cgroups documentation about [memory][cgroup-v1-memory].
Values for memory specify the limit in bytes, or -1 for unlimited memory.

• limit (int64, OPTIONAL) - sets limit of memory usage
• reservation (int64, OPTIONAL) - sets soft limit of memory usage
• swap (int64, OPTIONAL) - sets limit of memory+Swap usage
• kernel (int64, OPTIONAL, NOT RECOMMENDED) - sets hard limit

for kernel memory
• kernelTCP (int64, OPTIONAL, NOT RECOMMENDED) - sets hard

limit for kernel TCP buffer memory

The following properties do not specify memory limits, but are covered by the
memory controller:

• swappiness (uint64, OPTIONAL) - sets swappiness parameter of vmscan
(See sysctl’s vm.swappiness) The values are from 0 to 100. Higher means
more swappy.

• disableOOMKiller (bool, OPTIONAL) - enables or disables the OOM
killer. If enabled (false), tasks that attempt to consume more memory
than they are allowed are immediately killed by the OOM killer. The OOM
killer is enabled by default in every cgroup using the memory subsystem.
To disable it, specify a value of true.

33



• useHierarchy (bool, OPTIONAL) - enables or disables hierarchical mem-
ory accounting. If enabled (true), child cgroups will share the memory
limits of this cgroup.

• checkBeforeUpdate (bool, OPTIONAL) - enables container memory us-
age check before setting a new limit. If enabled (true), runtime MAY
check if a new memory limit is lower than the current usage, and MUST
reject the new limit. Practically, when cgroup v1 is used, the kernel rejects
the limit lower than the current usage, and when cgroup v2 is used, an
OOM killer is invoked. This setting can be used on cgroup v2 to mimic
the cgroup v1 behavior.

Example

"memory": {
"limit": 536870912,
"reservation": 536870912,
"swap": 536870912,
"kernel": -1,
"kernelTCP": -1,
"swappiness": 0,
"disableOOMKiller": false

}

CPU

cpu (object, OPTIONAL) represents the cgroup subsystems cpu and
cpusets. For more information, see the kernel cgroups documentation about
[cpusets][cgroup-v1-cpusets].

The following parameters can be specified to set up the controller:

• shares (uint64, OPTIONAL) - specifies a relative share of CPU time
available to the tasks in a cgroup

• quota (int64, OPTIONAL) - specifies the total amount of time in mi-
croseconds for which all tasks in a cgroup can run during one period (as
defined by period below) If specified with any (valid) positive value, it
MUST be no smaller than burst (runtimes MAY generate an error).

• burst (uint64, OPTIONAL) - specifies the maximum amount of accu-
mulated time in microseconds for which all tasks in a cgroup can run
additionally for burst during one period (as defined by period below) If
specified, this value MUST be no larger than any positive quota (runtimes
MAY generate an error).

• period (uint64, OPTIONAL) - specifies a period of time in microseconds
for how regularly a cgroup’s access to CPU resources should be reallocated
(CFS scheduler only)

34



• realtimeRuntime (int64, OPTIONAL) - specifies a period of time in mi-
croseconds for the longest continuous period in which the tasks in a cgroup
have access to CPU resources

• realtimePeriod (uint64, OPTIONAL) - same as period but applies to
realtime scheduler only

• cpus (string, OPTIONAL) - list of CPUs the container will run in
• mems (string, OPTIONAL) - list of Memory Nodes the container will run

in
• idle (int64, OPTIONAL) - cgroups are configured with minimum weight,

0: default behavior, 1: SCHED_IDLE.

Example

"cpu": {
"shares": 1024,
"quota": 1000000,
"burst": 1000000,
"period": 500000,
"realtimeRuntime": 950000,
"realtimePeriod": 1000000,
"cpus": "2-3",
"mems": "0-7",
"idle": 0

}

Block IO

blockIO (object, OPTIONAL) represents the cgroup subsystem blkio
which implements the block IO controller. For more information, see the
kernel cgroups documentation about [blkio][cgroup-v1-blkio] of cgroup v1 or
[io][cgroup-v2-io] of cgroup v2, .

Note that I/O throttling settings in cgroup v1 apply only to Direct I/O due to
kernel implementation constraints, while this limitation does not exist in cgroup
v2.

The following parameters can be specified to set up the controller:

• weight (uint16, OPTIONAL) - specifies per-cgroup weight. This is de-
fault weight of the group on all devices until and unless overridden by
per-device rules.

• leafWeight (uint16, OPTIONAL) - equivalents of weight for the purpose
of deciding how much weight tasks in the given cgroup has while competing
with the cgroup’s child cgroups.

35



• weightDevice (array of objects, OPTIONAL) - an array of per-device
bandwidth weights. Each entry has the following structure:

– major, minor (int64, REQUIRED) - major, minor numbers for de-
vice. For more information, see the [mknod(1)][mknod.1] man page.

– weight (uint16, OPTIONAL) - bandwidth weight for the device.
– leafWeight (uint16, OPTIONAL) - bandwidth weight for the device

while competing with the cgroup’s child cgroups, CFQ scheduler only

You MUST specify at least one of weight or leafWeight in a given entry,
and MAY specify both.

• throttleReadBpsDevice, throttleWriteBpsDevice (array of objects,
OPTIONAL) - an array of per-device bandwidth rate limits. Each entry
has the following structure:

– major, minor (int64, REQUIRED) - major, minor numbers for de-
vice. For more information, see the [mknod(1)][mknod.1] man page.

– rate (uint64, REQUIRED) - bandwidth rate limit in bytes per sec-
ond for the device

• throttleReadIOPSDevice, throttleWriteIOPSDevice (array of objects,
OPTIONAL) - an array of per-device IO rate limits. Each entry has the
following structure:

– major, minor (int64, REQUIRED) - major, minor numbers for de-
vice. For more information, see the [mknod(1)][mknod.1] man page.

– rate (uint64, REQUIRED) - IO rate limit for the device

Example

"blockIO": {
"weight": 10,
"leafWeight": 10,
"weightDevice": [

{
"major": 8,
"minor": 0,
"weight": 500,
"leafWeight": 300

},
{

"major": 8,
"minor": 16,
"weight": 500

}

36



],
"throttleReadBpsDevice": [

{
"major": 8,
"minor": 0,
"rate": 600

}
],
"throttleWriteIOPSDevice": [

{
"major": 8,
"minor": 16,
"rate": 300

}
]

}

Huge page limits

hugepageLimits (array of objects, OPTIONAL) represents the hugetlb con-
troller which allows to limit the HugeTLB reservations (if supported) or usage
(page fault). By default if supported by the kernel, hugepageLimits defines
the hugepage sizes and limits for HugeTLB controller reservation accounting,
which allows to limit the HugeTLB reservations per control group and enforces
the controller limit at reservation time and at the fault of HugeTLB memory
for which no reservation exists. Otherwise if not supported by the kernel, this
should fallback to the page fault accounting, which allows users to limit the
HugeTLB usage (page fault) per control group and enforces the limit during
page fault.
Note that reservation limits are superior to page fault limits, since reservation
limits are enforced at reservation time (on mmap or shget), and never causes
the application to get SIGBUS signal if the memory was reserved before hand.
This allows for easier fallback to alternatives such as non-HugeTLB memory
for example. In the case of page fault accounting, it’s very hard to avoid pro-
cesses getting SIGBUS since the sysadmin needs precisely know the HugeTLB
usage of all the tasks in the system and make sure there is enough pages to
satisfy all requests. Avoiding tasks getting SIGBUS on overcommited systems
is practically impossible with page fault accounting.
For more information, see the kernel cgroups documentation about
[HugeTLB][cgroup-v1-hugetlb].
Each entry has the following structure:

• pageSize (string, REQUIRED) - hugepage size. The value has
the format <size><unit-prefix>B (64KB, 2MB, 1GB), and must

37



match the <hugepagesize> of the corresponding control file found in
/sys/fs/cgroup/hugetlb/hugetlb.<hugepagesize>.rsvd.limit_in_bytes
(if hugetlb_cgroup reservation is supported) or /sys/fs/cgroup/hugetlb/hugetlb.<hugepagesize>.limit_in_bytes
(if not supported). Values of <unit-prefix> are intended to be parsed
using base 1024 ("1KB" = 1024, "1MB" = 1048576, etc).

• limit (uint64, REQUIRED) - limit in bytes of hugepagesize HugeTLB
reservations (if supported) or usage.

Example

"hugepageLimits": [
{

"pageSize": "2MB",
"limit": 209715200

},
{

"pageSize": "64KB",
"limit": 1000000

}
]

Network

network (object, OPTIONAL) represents the cgroup subsystems net_cls and
net_prio. For more information, see the kernel cgroups documentations about
[net_cls cgroup][cgroup-v1-net-cls] and [net_prio cgroup][cgroup-v1-net-prio].

The following parameters can be specified to set up the controller:

• classID (uint32, OPTIONAL) - is the network class identifier the
cgroup’s network packets will be tagged with

• priorities (array of objects, OPTIONAL) - specifies a list of objects of
the priorities assigned to traffic originating from processes in the group
and egressing the system on various interfaces. The following parameters
can be specified per-priority:

– name (string, REQUIRED) - interface name in runtime network
namespace

– priority (uint32, REQUIRED) - priority applied to the interface

Example

"network": {
"classID": 1048577,

38

glossary.md#runtime-namespace
glossary.md#runtime-namespace


"priorities": [
{

"name": "eth0",
"priority": 500

},
{

"name": "eth1",
"priority": 1000

}
]

}

PIDs

pids (object, OPTIONAL) represents the cgroup subsystem pids. For more
information, see the kernel cgroups documentation about [pids][cgroup-v1-pids].

The following parameters can be specified to set up the controller:

• limit (int64, REQUIRED) - specifies the maximum number of tasks in
the cgroup

Example

"pids": {
"limit": 32771

}

RDMA

rdma (object, OPTIONAL) represents the cgroup subsystem rdma. For more in-
formation, see the kernel cgroups documentation about [rdma][cgroup-v1-rdma].

The name of the device to limit is the entry key. Entry values are objects with
the following properties:

• hcaHandles (uint32, OPTIONAL) - specifies the maximum number of
hca_handles in the cgroup

• hcaObjects (uint32, OPTIONAL) - specifies the maximum number of
hca_objects in the cgroup

You MUST specify at least one of the hcaHandles or hcaObjects in a given
entry, and MAY specify both.

39



Example

"rdma": {
"mlx5_1": {

"hcaHandles": 3,
"hcaObjects": 10000

},
"mlx4_0": {

"hcaObjects": 1000
},
"rxe3": {

"hcaObjects": 10000
}

}

Unified

unified (object, OPTIONAL) allows cgroup v2 parameters to be to be set and
modified for the container.

Each key in the map refers to a file in the cgroup unified hierarchy.

The OCI runtime MUST ensure that the needed cgroup controllers are enabled
for the cgroup.

Configuration unknown to the runtime MUST still be written to the relevant
file.

The runtime MUST generate an error when the configuration refers to a cgroup
controller that is not present or that cannot be enabled.

Example

"unified": {
"io.max": "259:0 rbps=2097152 wiops=120\n253:0 rbps=2097152 wiops=120",
"hugetlb.1GB.max": "1073741824"

}

If a controller is enabled on the cgroup v2 hierarchy but the configuration is
provided for the cgroup v1 equivalent controller, the runtime MAY attempt a
conversion.

If the conversion is not possible the runtime MUST generate an error.

40



IntelRdt

intelRdt (object, OPTIONAL) represents the [Intel Resource Director
Technology][intel-rdt-cat-kernel-interface]. If intelRdt is set, the runtime
MUST write the container process ID to the tasks file in a proper sub-directory
in a mounted resctrl pseudo-filesystem. That sub-directory name is specified
by closID parameter. If no mounted resctrl pseudo-filesystem is available in
the runtime mount namespace, the runtime MUST generate an error.

If intelRdt is not set, the runtime MUST NO

Solaris Application Container Configuration

Solaris application containers can be configured using the following proper-
ties, all of the below properties have mappings to properties specified under
zonecfg(1M) man page, except milestone.

milestone

The SMF(Service Management Facility) FMRI which should go to "online" state
before we start the desired process within the container.

milestone (string, OPTIONAL)

Example

"milestone": "svc:/milestone/container:default"

limitpriv

The maximum set of privileges any process in this container can obtain. The
property should consist of a comma-separated privilege set specification as de-
scribed in priv_str_to_set(3C) man page for the respective release of Solaris.

limitpriv (string, OPTIONAL)

Example

"limitpriv": "default"

41

glossary.md#runtime-namespace
runtime.md#errors
http://docs.oracle.com/cd/E86824_01/html/E54764/zonecfg-1m.html
http://docs.oracle.com/cd/E86824_01/html/E54766/priv-str-to-set-3c.html


maxShmMemory

The maximum amount of shared memory allowed for this application container.
A scale (K, M, G, T) can be applied to the value for each of these numbers (for
example, 1M is one megabyte). Mapped to max-shm-memory in zonecfg(1M)
man page.

maxShmMemory (string, OPTIONAL)

Example

"maxShmMemory": "512m"

cappedCPU

Sets a limit on the amount of CPU time that can be used by a container. The
unit used translates to the percentage of a single CPU that can be used by all
user threads in a container, expressed as a fraction (for example, .75) or a mixed
number (whole number and fraction, for example, 1.25). An ncpu value of 1
means 100% of a CPU, a value of 1.25 means 125%, .75 mean 75%, and so forth.
When projects within a capped container have their own caps, the minimum
value takes precedence. cappedCPU is mapped to capped-cpu in zonecfg(1M)
man page.

• ncpus (string, OPTIONAL)

Example

"cappedCPU": {
"ncpus": "8"

}

cappedMemory

The physical and swap caps on the memory that can be used by this application
container. A scale (K, M, G, T) can be applied to the value for each of these
numbers (for example, 1M is one megabyte). cappedMemory is mapped to
capped-memory in zonecfg(1M) man page.

• physical (string, OPTIONAL)
• swap (string, OPTIONAL)

42

http://docs.oracle.com/cd/E86824_01/html/E54764/zonecfg-1m.html
http://docs.oracle.com/cd/E86824_01/html/E54764/zonecfg-1m.html
http://docs.oracle.com/cd/E86824_01/html/E54764/zonecfg-1m.html


Example

"cappedMemory": {
"physical": "512m",
"swap": "512m"

}

Network

Automatic Network (anet)

anet is specified as an array that is used to set up networking for Solaris appli-
cation containers. The anet resource represents the automatic creation of a net-
work resource for an application container. The zones administration daemon,
zoneadmd, is the primary process for managing the container’s virtual platform.
One of the daemon’s responsibilities is creation and teardown of the networks
for the container. For more information on the daemon see the zoneadmd(1M)
man page. When such a container is started, a temporary VNIC(Virtual NIC)
is automatically created for the container. The VNIC is deleted when the con-
tainer is torn down. The following properties can be used to set up automatic
networks. For additional information on properties, check the zonecfg(1M) man
page for the respective release of Solaris.

• linkname (string, OPTIONAL) Specify a name for the automatically cre-
ated VNIC datalink.

• lowerLink (string, OPTIONAL) Specify the link over which the VNIC
will be created. Mapped to lower-link in the zonecfg(1M) man page.

• allowedAddress (string, OPTIONAL) The set of IP addresses that the
container can use might be constrained by specifying the allowedAddress
property. If allowedAddress has not been specified, then they can use any
IP address on the associated physical interface for the network resource.
Otherwise, when allowedAddress is specified, the container cannot use IP
addresses that are not in the allowedAddress list for the physical address.
Mapped to allowed-address in the zonecfg(1M) man page.

• configureAllowedAddress (string, OPTIONAL) If configureAllowedAddress
is set to true, the addresses specified by allowedAddress are automati-
cally configured on the interface each time the container starts. When it
is set to false, the allowedAddress will not be configured on container
start. Mapped to configure-allowed-address in the zonecfg(1M) man
page.

• defrouter (string, OPTIONAL) The value for the OPTIONAL default
router.

• macAddress (string, OPTIONAL) Set the VNIC’s MAC addresses based
on the specified value or keyword. If not a keyword, it is interpreted as
a unicast MAC address. For a list of the supported keywords please refer

43

http://docs.oracle.com/cd/E86824_01/html/E54764/zoneadmd-1m.html
http://docs.oracle.com/cd/E86824_01/html/E54764/zonecfg-1m.html
http://docs.oracle.com/cd/E86824_01/html/E54764/zonecfg-1m.html
http://docs.oracle.com/cd/E86824_01/html/E54764/zonecfg-1m.html
http://docs.oracle.com/cd/E86824_01/html/E54764/zonecfg-1m.html


to the zonecfg(1M) man page of the respective Solaris release. Mapped to
mac-address in the zonecfg(1M) man page.

• linkProtection (string, OPTIONAL) Enables one or more types of link
protection using comma-separated values. See the protection property in
dladm(8) for supported values in respective release of Solaris. Mapped to
link-protection in the zonecfg(1M) man page.

Example

"anet": [
{

"allowedAddress": "172.17.0.2/16",
"configureAllowedAddress": "true",
"defrouter": "172.17.0.1/16",
"linkProtection": "mac-nospoof, ip-nospoof",
"linkname": "net0",
"lowerLink": "net2",
"macAddress": "02:42:f8:52:c7:16"

}
]

Features Structure

A runtime MAY provide a JSON structure about its implemented features to
runtime callers. This JSON structure is called "Features structure".

The Features structure is irrelevant to the actual availability of the features
in the host operating system. Hence, the content of the Features structure
SHOULD be determined on the compilation time of the runtime, not on the
execution time.

All properties in the Features structure except ociVersionMin and
ociVersionMax MAY either be absent or have the null value. The null value
MUST NOT be confused with an empty value such as 0, false, "", [], and
{}.

Specification version

• ociVersionMin (string, REQUIRED) The minimum recognized version of
the Open Container Initiative Runtime Specification. The runtime MUST
accept this value as the ociVersion property of config.json.

• ociVersionMax (string, REQUIRED) The maximum recognized version of
the Open Container Initiative Runtime Specification. The runtime MUST

44

http://docs.oracle.com/cd/E86824_01/html/E54764/zonecfg-1m.html
http://docs.oracle.com/cd/E86824_01/html/E54764/zonecfg-1m.html
http://docs.oracle.com/cd/E86824_01/html/E54764/zonecfg-1m.html
glossary.md#runtime
glossary.md#runtime-caller
glossary.md#features-structure
config.md#specification-version


accept this value as the ociVersion property of config.json. The value
MUST NOT be less than the value of the ociVersionMin property. The
Features structure MUST NOT contain properties that are not defined in
this version of the Open Container Initiative Runtime Specification.

Example

{
"ociVersionMin": "1.0.0",
"ociVersionMax": "1.1.0"

}

Hooks

• hooks (array of strings, OPTIONAL) The recognized names of the hooks.
The runtime MUST support the elements in this array as the hooks prop-
erty of config.json.

Example

"hooks": [
"prestart",
"createRuntime",
"createContainer",
"startContainer",
"poststart",
"poststop"

]

Mount Options

• mountOptions (array of strings, OPTIONAL) The recognized names of
the mount options, including options that might not be supported by the
host operating system. The runtime MUST recognize the elements in this
array as the options of mounts objects in config.json.

– Linux: this array SHOULD NOT contain filesystem-specific mount
options that are passed to the mount(2) syscall as const void
*data.

45

config.md#specification-version
config.md#hooks
config.md#hooks
config.md#hooks
config.md#mounts
https://man7.org/linux/man-pages/man2/mount.2.html


Example

"mountOptions": [
"acl",
"async",
"atime",
"bind",
"defaults",
"dev",
"diratime",
"dirsync",
"exec",
"iversion",
"lazytime",
"loud",
"mand",
"noacl",
"noatime",
"nodev",
"nodiratime",
"noexec",
"noiversion",
"nolazytime",
"nomand",
"norelatime",
"nostrictatime",
"nosuid",
"nosymfollow",
"private",
"ratime",
"rbind",
"rdev",
"rdiratime",
"relatime",
"remount",
"rexec",
"rnoatime",
"rnodev",
"rnodiratime",
"rnoexec",
"rnorelatime",
"rnostrictatime",
"rnosuid",
"rnosymfollow",
"ro",
"rprivate",

46



"rrelatime",
"rro",
"rrw",
"rshared",
"rslave",
"rstrictatime",
"rsuid",
"rsymfollow",
"runbindable",
"rw",
"shared",
"silent",
"slave",
"strictatime",
"suid",
"symfollow",
"sync",
"tmpcopyup",
"unbindable"

]

Platform-specific features

• linux (object, OPTIONAL) Linux-specific features. This MAY be set if
the runtime supports linux platform.

Annotations

annotations (object, OPTIONAL) contains arbitrary metadata of the runtime.
This information MAY be structured or unstructured. Annotations MUST be
a key-value map that follows the same convention as the Key and Values of
the annotations property of config.json. However, annotations do not need
to contain the possible values of the annotations property of config.json.
The current version of the spec do not provide a way to enumerate the possible
values of the annotations property of config.json.

Example

"annotations": {
"org.opencontainers.runc.checkpoint.enabled": "true",
"org.opencontainers.runc.version": "1.1.0"

}

47

features-linux.md
config.md#annotations
config.md#annotations
config.md#annotations


Example

Here is a full example for reference.

{
"ociVersionMin": "1.0.0",
"ociVersionMax": "1.1.0-rc.2",
"hooks": [

"prestart",
"createRuntime",
"createContainer",
"startContainer",
"poststart",
"poststop"

],
"mountOptions": [

"async",
"atime",
"bind",
"defaults",
"dev",
"diratime",
"dirsync",
"exec",
"iversion",
"lazytime",
"loud",
"mand",
"noatime",
"nodev",
"nodiratime",
"noexec",
"noiversion",
"nolazytime",
"nomand",
"norelatime",
"nostrictatime",
"nosuid",
"nosymfollow",
"private",
"ratime",
"rbind",
"rdev",
"rdiratime",
"relatime",

48



"remount",
"rexec",
"rnoatime",
"rnodev",
"rnodiratime",
"rnoexec",
"rnorelatime",
"rnostrictatime",
"rnosuid",
"rnosymfollow",
"ro",
"rprivate",
"rrelatime",
"rro",
"rrw",
"rshared",
"rslave",
"rstrictatime",
"rsuid",
"rsymfollow",
"runbindable",
"rw",
"shared",
"silent",
"slave",
"strictatime",
"suid",
"symfollow",
"sync",
"tmpcopyup",
"unbindable"

],
"linux": {

"namespaces": [
"cgroup",
"ipc",
"mount",
"network",
"pid",
"user",
"uts"

],
"capabilities": [

"CAP_CHOWN",
"CAP_DAC_OVERRIDE",
"CAP_DAC_READ_SEARCH",

49



"CAP_FOWNER",
"CAP_FSETID",
"CAP_KILL",
"CAP_SETGID",
"CAP_SETUID",
"CAP_SETPCAP",
"CAP_LINUX_IMMUTABLE",
"CAP_NET_BIND_SERVICE",
"CAP_NET_BROADCAST",
"CAP_NET_ADMIN",
"CAP_NET_RAW",
"CAP_IPC_LOCK",
"CAP_IPC_OWNER",
"CAP_SYS_MODULE",
"CAP_SYS_RAWIO",
"CAP_SYS_CHROOT",
"CAP_SYS_PTRACE",
"CAP_SYS_PACCT",
"CAP_SYS_ADMIN",
"CAP_SYS_BOOT",
"CAP_SYS_NICE",
"CAP_SYS_RESOURCE",
"CAP_SYS_TIME",
"CAP_SYS_TTY_CONFIG",
"CAP_MKNOD",
"CAP_LEASE",
"CAP_AUDIT_WRITE",
"CAP_AUDIT_CONTROL",
"CAP_SETFCAP",
"CAP_MAC_OVERRIDE",
"CAP_MAC_ADMIN",
"CAP_SYSLOG",
"CAP_WAKE_ALARM",
"CAP_BLOCK_SUSPEND",
"CAP_AUDIT_READ",
"CAP_PERFMON",
"CAP_BPF",
"CAP_CHECKPOINT_RESTORE"

],
"cgroup": {

"v1": true,
"v2": true,
"systemd": true,
"systemdUser": true,
"rdma": true

},

50



"seccomp": {
"enabled": true,
"actions": [

"SCMP_ACT_ALLOW",
"SCMP_ACT_ERRNO",
"SCMP_ACT_KILL",
"SCMP_ACT_KILL_PROCESS",
"SCMP_ACT_KILL_THREAD",
"SCMP_ACT_LOG",
"SCMP_ACT_NOTIFY",
"SCMP_ACT_TRACE",
"SCMP_ACT_TRAP"

],
"operators": [

"SCMP_CMP_EQ",
"SCMP_CMP_GE",
"SCMP_CMP_GT",
"SCMP_CMP_LE",
"SCMP_CMP_LT",
"SCMP_CMP_MASKED_EQ",
"SCMP_CMP_NE"

],
"archs": [

"SCMP_ARCH_AARCH64",
"SCMP_ARCH_ARM",
"SCMP_ARCH_MIPS",
"SCMP_ARCH_MIPS64",
"SCMP_ARCH_MIPS64N32",
"SCMP_ARCH_MIPSEL",
"SCMP_ARCH_MIPSEL64",
"SCMP_ARCH_MIPSEL64N32",
"SCMP_ARCH_PPC",
"SCMP_ARCH_PPC64",
"SCMP_ARCH_PPC64LE",
"SCMP_ARCH_RISCV64",
"SCMP_ARCH_S390",
"SCMP_ARCH_S390X",
"SCMP_ARCH_X32",
"SCMP_ARCH_X86",
"SCMP_ARCH_X86_64"

],
"knownFlags": [

"SECCOMP_FILTER_FLAG_TSYNC",
"SECCOMP_FILTER_FLAG_SPEC_ALLOW",
"SECCOMP_FILTER_FLAG_LOG"

],

51



"supportedFlags": [
"SECCOMP_FILTER_FLAG_TSYNC",
"SECCOMP_FILTER_FLAG_SPEC_ALLOW",
"SECCOMP_FILTER_FLAG_LOG"

]
},
"apparmor": {

"enabled": true
},
"selinux": {

"enabled": true
},
"intelRdt": {

"enabled": true
}

},
"annotations": {

"io.github.seccomp.libseccomp.version": "2.5.4",
"org.opencontainers.runc.checkpoint.enabled": "true",
"org.opencontainers.runc.commit": "v1.1.0-534-g26851168",
"org.opencontainers.runc.version": "1.1.0+dev"

}
}

Linux Features Structure

This document describes the Linux-specific section of the Features structure.

Namespaces

• namespaces (array of strings, OPTIONAL) The recognized names of the
namespaces, including namespaces that might not be supported by the
host operating system. The runtime MUST recognize the elements in this
array as the type of linux.namespaces objects in config.json.

Example

"namespaces": [
"cgroup",
"ipc",
"mount",
"network",
"pid",

52

features.md#platform-specific-features
features.md
config-linux.md#namespaces


"user",
"uts"

]

Capabilities

• capabilities (array of strings, OPTIONAL) The recognized names of
the capabilities, including capabilities that might not be supported by the
host operating system. The runtime MUST recognize the elements in this
array in the process.capabilities object of config.json.

Example

"capabilities": [
"CAP_CHOWN",
"CAP_DAC_OVERRIDE",
"CAP_DAC_READ_SEARCH",
"CAP_FOWNER",
"CAP_FSETID",
"CAP_KILL",
"CAP_SETGID",
"CAP_SETUID",
"CAP_SETPCAP",
"CAP_LINUX_IMMUTABLE",
"CAP_NET_BIND_SERVICE",
"CAP_NET_BROADCAST",
"CAP_NET_ADMIN",
"CAP_NET_RAW",
"CAP_IPC_LOCK",
"CAP_IPC_OWNER",
"CAP_SYS_MODULE",
"CAP_SYS_RAWIO",
"CAP_SYS_CHROOT",
"CAP_SYS_PTRACE",
"CAP_SYS_PACCT",
"CAP_SYS_ADMIN",
"CAP_SYS_BOOT",
"CAP_SYS_NICE",
"CAP_SYS_RESOURCE",
"CAP_SYS_TIME",
"CAP_SYS_TTY_CONFIG",
"CAP_MKNOD",
"CAP_LEASE",
"CAP_AUDIT_WRITE",

53

config.md#linux-process


"CAP_AUDIT_CONTROL",
"CAP_SETFCAP",
"CAP_MAC_OVERRIDE",
"CAP_MAC_ADMIN",
"CAP_SYSLOG",
"CAP_WAKE_ALARM",
"CAP_BLOCK_SUSPEND",
"CAP_AUDIT_READ",
"CAP_PERFMON",
"CAP_BPF",
"CAP_CHECKPOINT_RESTORE"

]

Cgroup

cgroup (object, OPTIONAL) represents the runtime’s implementation status of
cgroup managers. Irrelevant to the cgroup version of the host operating system.

• v1 (bool, OPTIONAL) represents whether the runtime supports cgroup
v1.

• v2 (bool, OPTIONAL) represents whether the runtime supports cgroup
v2.

• systemd (bool, OPTIONAL) represents whether the runtime supports
system-wide systemd cgroup manager.

• systemdUser (bool, OPTIONAL) represents whether the runtime sup-
ports user-scoped systemd cgroup manager.

• rdma (bool, OPTIONAL) represents whether the runtime supports RDMA
cgroup controller.

Example

"cgroup": {
"v1": true,
"v2": true,
"systemd": true,
"systemdUser": true,
"rdma": false

}

Seccomp

seccomp (object, OPTIONAL) represents the runtime’s implementation status
of seccomp. Irrelevant to the kernel version of the host operating system.

54



• enabled (bool, OPTIONAL) represents whether the runtime supports
seccomp.

• actions (array of strings, OPTIONAL) The recognized names of the sec-
comp actions. The runtime MUST recognize the elements in this ar-
ray in the syscalls[].action property of the linux.seccomp object in
config.json.

• operators (array of strings, OPTIONAL) The recognized names of the
seccomp operators. The runtime MUST recognize the elements in this ar-
ray in the syscalls[].args[].op property of the linux.seccomp object
in config.json.

• archs (array of strings, OPTIONAL) The recognized names of the sec-
comp architectures. The runtime MUST recognize the elements in this
array in the architectures property of the linux.seccomp object in
config.json.

• knownFlags (array of strings, OPTIONAL) The recognized names of the
seccomp flags. The runtime MUST recognize the elements in this array in
the flags property of the linux.seccomp object in config.json.

• supportedFlags (array of strings, OPTIONAL) The recognized and
supported names of the seccomp flags. This list may be a subset of
knownFlags due to some flags not supported by the current kernel and/or
libseccomp. The runtime MUST recognize and support the elements
in this array in the flags property of the linux.seccomp object in
config.json.

Example

"seccomp": {
"enabled": true,
"actions": [

"SCMP_ACT_ALLOW",
"SCMP_ACT_ERRNO",
"SCMP_ACT_KILL",
"SCMP_ACT_LOG",
"SCMP_ACT_NOTIFY",
"SCMP_ACT_TRACE",
"SCMP_ACT_TRAP"

],
"operators": [

"SCMP_CMP_EQ",
"SCMP_CMP_GE",
"SCMP_CMP_GT",
"SCMP_CMP_LE",
"SCMP_CMP_LT",
"SCMP_CMP_MASKED_EQ",
"SCMP_CMP_NE"

55

config-linux.md#seccomp
config-linux.md#seccomp
config-linux.md#seccomp
config-linux.md#seccomp
config-linux.md#seccomp
config-linux.md#seccomp
config-linux.md#seccomp
config-linux.md#seccomp
config-linux.md#seccomp


],
"archs": [

"SCMP_ARCH_AARCH64",
"SCMP_ARCH_ARM",
"SCMP_ARCH_MIPS",
"SCMP_ARCH_MIPS64",
"SCMP_ARCH_MIPS64N32",
"SCMP_ARCH_MIPSEL",
"SCMP_ARCH_MIPSEL64",
"SCMP_ARCH_MIPSEL64N32",
"SCMP_ARCH_PPC",
"SCMP_ARCH_PPC64",
"SCMP_ARCH_PPC64LE",
"SCMP_ARCH_S390",
"SCMP_ARCH_S390X",
"SCMP_ARCH_X32",
"SCMP_ARCH_X86",
"SCMP_ARCH_X86_64"

],
"knownFlags": [

"SECCOMP_FILTER_FLAG_LOG"
],
"supportedFlags": [

"SECCOMP_FILTER_FLAG_LOG"
]

}

AppArmor

apparmor (object, OPTIONAL) represents the runtime’s implementation status
of AppArmor. Irrelevant to the availability of AppArmor on the host operating
system.

• enabled (bool, OPTIONAL) represents whether the runtime supports
AppArmor.

Example

"apparmor": {
"enabled": true

}

56



SELinux

selinux (object, OPTIONAL) represents the runtime’s implementation status
of SELinux. Irrelevant to the availability of SELinux on the host operating
system.

• enabled (bool, OPTIONAL) represents whether the runtime supports
SELinux.

Example

"selinux": {
"enabled": true

}

Intel RDT

intelRdt (object, OPTIONAL) represents the runtime’s implementation status
of Intel RDT. Irrelevant to the availability of Intel RDT on the host operating
system.

• enabled (bool, OPTIONAL) represents whether the runtime supports
Intel RDT.

Example

"intelRdt": {
"enabled": true

}

Glossary

Bundle

A directory structure that is written ahead of time, distributed, and used to
seed the runtime for creating a container and launching a process within it.

Configuration

The config.json file in a bundle which defines the intended container and
container process.

57

bundle.md
config.md


Container

An environment for executing processes with configurable isolation and resource
limitations. For example, namespaces, resource limits, and mounts are all part
of the container environment.

Container namespace

On Linux,the [namespaces][namespaces.7] in which the configured process exe-
cutes.

Features Structure

A [JSON][] structure that represents the implemented features of the runtime.
Irrelevant to the actual availability of the features in the host operating system.

JSON

All configuration [JSON][] MUST be encoded in [UTF-8][]. JSON objects MUST
NOT include duplicate names. The order of entries in JSON objects is not
significant.

Runtime

An implementation of this specification. It reads the configuration files from a
bundle, uses that information to create a container, launches a process inside
the container, and performs other lifecycle actions.

Runtime caller

An external program to execute a runtime, directly or indirectly.

Examples of direct callers include cont

58

config.md#process
runtime.md

	Open Container Initiative Runtime Specification
	Abstract
	Platforms
	Table of Contents
	Notational Conventions
	The 5 principles of Standard Containers
	1. Standard operations
	2. Content-agnostic
	3. Infrastructure-agnostic
	4. Designed for automation
	5. Industrial-grade delivery

	Filesystem Bundle
	Container Format

	Runtime and Lifecycle
	Scope of a Container
	State
	Example

	Lifecycle
	Errors
	Warnings
	Operations
	Query State
	Create
	Start
	Kill


	Linux Runtime
	File descriptors
	 Dev symbolic links

	Configuration
	Specification version
	Example

	Root
	Example (POSIX platforms)
	Example (Windows)

	Mounts
	Linux mount options
	Example (Windows)
	POSIX-platform Mounts
	Example (Linux)
	Example (Solaris)

	Process
	POSIX process
	Linux Process
	User
	Example (Linux)
	Example (Solaris)
	Example (Windows)

	Hostname
	Example

	Domainname
	Example

	Platform-specific configuration
	Example (Linux)

	POSIX-platform Hooks
	Prestart
	CreateRuntime Hooks
	CreateContainer Hooks


	Linux Container Configuration
	Default Filesystems
	Namespaces
	Example

	User namespace mappings
	Example

	Offset for Time Namespace
	Devices
	Example
	Default Devices

	Control groups
	Cgroups Path
	Cgroup ownership
	Example
	Allowed Device list
	Memory
	CPU
	Block IO
	Huge page limits
	Network
	PIDs
	RDMA

	Unified
	Example

	IntelRdt

	Solaris Application Container Configuration
	milestone
	Example

	limitpriv
	Example

	maxShmMemory
	Example

	cappedCPU
	Example

	cappedMemory
	Example

	Network
	Automatic Network (anet)


	Features Structure
	Specification version
	Example

	Hooks
	Example

	Mount Options
	Example

	Platform-specific features
	Annotations
	Example


	Example
	Linux Features Structure
	Namespaces
	Example

	Capabilities
	Example

	Cgroup
	Example

	Seccomp
	Example

	AppArmor
	Example

	SELinux
	Example

	Intel RDT
	Example


	Glossary
	Bundle
	Configuration
	Container
	Container namespace
	Features Structure
	JSON
	Runtime
	Runtime caller


