
Specification Version: 1.0.1

Open Container Initiative Runtime Specification

The Open Container Initiative develops specifications for standards on Operating
System process and application containers.

Abstract

The Open Container Initiative Runtime Specification aims to specify the config-
uration, execution environment, and lifecycle of a container.

A container’s configuration is specified as the config.json for the supported
platforms and details the fields that enable the creation of a container.
The execution environment is specified to ensure that applications running inside
a container have a consistent environment between runtimes along with common
actions defined for the container’s lifecycle.

Platforms

Platforms defined by this specification are:

• linux: runtime.md, config.md, config-linux.md, and runtime-linux.md.
• solaris: runtime.md, config.md, and config-solaris.md.
• windows: runtime.md, config.md, and config-windows.md.

Table of Contents

• Introduction

– Notational Conventions
– Container Principles

• Filesystem Bundle
• Runtime and Lifecycle

– Linux-specific Runtime and Lifecycle

• Configuration

– Linux-specific Configuration
– Solaris-specific Configuration

1

http://www.opencontainers.org
runtime.md
config.md
config-linux.md
runtime-linux.md
runtime.md
config.md
config-solaris.md
runtime.md
config.md
config-windows.md
spec.md
principles.md
bundle.md
runtime.md
runtime-linux.md
config.md
config-linux.md
config-solaris.md

– Windows-specific Configuration

• Glossary

Notational Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL
NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “NOT RECOM-
MENDED”, “MAY”, and “OPTIONAL” are to be interpreted as described in
RFC 2119.

The key words “unspecified”, “undefined”, and “implementation-defined” are to
be interpreted as described in the rationale for the C99 standard.

An implementation is not compliant for a given CPU architecture if it fails to
satisfy one or more of the MUST, REQUIRED, or SHALL requirements for the
platforms it implements.
An implementation is compliant for a given CPU architecture if it satisfies all the
MUST, REQUIRED, and SHALL requirements for the platforms it implements.

The 5 principles of Standard Containers

Define a unit of software delivery called a Standard Container.
The goal of a Standard Container is to encapsulate a software component and
all its dependencies in a format that is self-describing and portable, so that
any compliant runtime can run it without extra dependencies, regardless of the
underlying machine and the contents of the container.

The specification for Standard Containers defines:

1. configuration file formats
2. a set of standard operations
3. an execution environment.

A great analogy for this is the physical shipping container used by the trans-
portation industry.
Shipping containers are a fundamental unit of delivery, they can be lifted, stacked,
locked, loaded, unloaded and labelled.
Irrespective of their contents, by standardizing the container itself it allowed for
a consistent, more streamlined and efficient set of processes to be defined.
For software Standard Containers offer similar functionality by being the funda-
mental, standardized, unit of delivery for a software package.

2

config-windows.md
glossary.md
http://tools.
http://www.open-std.org/jtc1/sc22/wg14/www/C99RationaleV5.10.pdf#page=18

1. Standard operations

Standard Containers define a set of STANDARD OPERATIONS.
They can be created, started, and stopped using standard container tools; copied
and snapshotted using standard filesystem tools; and downloaded and uploaded
using standard network tools.

2. Content-agnostic

Standard Containers are CONTENT-AGNOSTIC: all standard operations have
the same effect regardless of the contents.
They are started in the same way whether they contain a postgres database,
a php application with its dependencies and application server, or Java build
artifacts.

3. Infrastructure-agnostic

Standard Containers are INFRASTRUCTURE-AGNOSTIC: they can be run in
any OCI supported infrastructure.
For example, a standard container can be bundled on a laptop, uploaded to
cloud storage, downloaded, run and snapshotted by a build server at a fiber
hotel in Virginia, uploaded to 10 staging servers in a home-made private cloud
cluster, then sent to 30 production instances across 3 public cloud regions.

4. Designed for automation

Standard Containers are DESIGNED FOR AUTOMATION: because they offer
the same standard operations regardless of content and infrastructure, Standard
Containers, are extremely well-suited for automation.
In fact, you could say automation is their secret weapon.

Many things that once required time-consuming and error-prone human effort
can now be programmed.
Before Standard Containers, by the time a software component ran in produc-
tion, it had been individually built, configured, bundled, documented, patched,
vendored, templated, tweaked and instrumented by 10 different people on 10
different computers.
Builds failed, libraries conflicted, mirrors crashed, post-it notes were lost, logs
were misplaced, cluster updates were half-broken.
The process was slow, inefficient and cost a fortune - and was entirely different
depending on the language and infrastructure provider.

3

5. Industrial-grade delivery

Standard Containers make INDUSTRIAL-GRADE DELIVERY of software a
reality.
Leveraging all of the properties listed above, Standard Containers are enabling
large and small enterprises to streamline and automate their software delivery
pipelines.
Whether it is in-house devOps flows, or external customer-based software delivery
mechanisms, Standard Containers are changing the way the community thinks
about software packaging and delivery.

Filesystem Bundle

Container Format

This section defines a format for encoding a container as a filesystem bundle - a
set of files organized in a certain way, and containing all the necessary data and
metadata for any compliant runtime to perform all standard operations against
it.
See also MacOS application bundles for a similar use of the term bundle.

The definition of a bundle is only concerned with how a container, and its
configuration data, are stored on a local filesystem so that it can be consumed
by a compliant runtime.

A Standard Container bundle contains all the information needed to load and
run a container.
This includes the following artifacts:

1. config.json: contains configuration data.
This REQUIRED file MUST reside in the root of the bundle directory and
MUST be named config.json.
See config.json for more details.

2. container’s root filesystem: the directory referenced by root.path, if that
property is set in config.json.

When supplied, while these artifacts MUST all be present in a single directory
on the local filesystem, that directory itself is not part of the bundle.
In other words, a tar archive of a bundle will have these artifacts at the root of
the archive, not nested within a top-level directory.

4

https://en.wikipedia.org/wiki/Bundle_%28macOS%29
config.md
config.md#root

Runtime and Lifecycle

Scope of a Container

The entity using a runtime to create a container MUST be able to use the
operations defined in this specification against that same container.
Whether other entities using the same, or other, instance of the runtime can see
that container is out of scope of this specification.

State

The state of a container includes the following properties:

• ociVersion (string, REQUIRED) is the OCI specification version used
when creating the container.

• id (string, REQUIRED) is the container’s ID.
This MUST be unique across all containers on this host.
There is no requirement that it be unique across hosts.

• status (string, REQUIRED) is the runtime state of the container.
The value MAY be one of:

– creating: the container is being created (step 2 in the lifecycle)
– created: the runtime has finished the create operation (after step

2 in the lifecycle), and the container process has neither exited nor
executed the user-specified program

– running: the container process has executed the user-specified pro-
gram but has not exited (after step 5 in the lifecycle)

– stopped: the container process has exited (step 7 in the lifecycle)

Additional values MAY be defined by the runtime, however, they MUST
be used to represent new runtime states not defined above.

• pid (int, REQUIRED when status is created or running on Linux,
OPTIONAL on other platforms) is the ID of the container process, as seen
by the host.

• bundle (string, REQUIRED) is the absolute path to the container’s bundle
directory.
This is provided so that consumers can find the container’s configuration
and root filesystem on the host.

• annotations (map, OPTIONAL) contains the list of annotations associ-
ated with the container.
If no annotations were provided then this property MAY either be absent
or an empty map.

5

The state MAY include additional properties.

When serialized in JSON, the format MUST adhere to the following pattern:

{
"ociVersion": "0.2.0",
"id": "oci-container1",
"status": "running",
"pid": 4422,
"bundle": "/containers/redis",
"annotations": {

"myKey": "myValue"
}

}

See Query State for information on retrieving the state of a container.

Lifecycle

The lifecycle describes the timeline of events that happen from when a container
is created to when it ceases to exist.

1. OCI compliant runtime’s create command is invoked with a reference to
the location of the bundle and a unique identifier.

2. The container’s runtime environment MUST be created according to the
configuration in config.json.
If the runtime is unable to create the environment specified in the
config.json, it MUST generate an error.
While the resources requested in the config.json MUST be created, the
user-specified program (from process) MUST NOT be run at this time.
Any updates to config.json after this step MUST NOT affect the
container.

3. Runtime’s start command is invoked with the unique identifier of the
container.

4. The prestart hooks MUST be invoked by the runtime.
If any prestart hook fails, the runtime MUST generate an error, stop the
container, and continue the lifecycle at step 9.

5. The runtime MUST run the user-specified program, as specified by
process.

6. The poststart hooks MUST be invoked by the runtime.
If any poststart hook fails, the runtime MUST log a warning, but the
remaining hooks and lifecycle continue as if the hook had succeeded.

7. The container process exits.
This MAY happen due to erroring out, exiting, crashing or the runtime’s
kill operation being invoked.

6

runtime.md#create
config.md
config.md
config.md
config.md#process
config.md
runtime.md#start
config.md#prestart
config.md#process
config.md#poststart
runtime.md#kill

8. Runtime’s delete command is invoked with the unique identifier of the
container.

9. The container MUST be destroyed by undoing the steps performed during
create phase (step 2).

10. The poststop hooks MUST be invoked by the runtime.
If any poststop hook fails, the runtime MUST log a warning, but the
remaining hooks and lifecycle continue as if the hook had succeeded.

Errors

In cases where the specified operation generates an error, this specification does
not mandate how, or even if, that error is returned or exposed to the user of an
implementation.
Unless otherwise stated, generating an error MUST leave the state of the
environment as if the operation were never attempted - modulo any possible
trivial ancillary changes such as logging.

Warnings

In cases where the specified operation logs a warning, this specification does not
mandate how, or even if, that warning is returned or exposed to the user of an
implementation.
Unless otherwise stated, logging a warning does not change the flow of the
operation; it MUST continue as if the warning had not been logged.

Operations

Unless otherwise stated, runtimes MUST support the following operations.

Note: these operations are not specifying any command-line APIs, and the
parameters are inputs for general operations.

Query State

state <container-id>

This operation MUST generate an error if it is not provided the ID of a container.
Attempting to query a container that does not exist MUST generate an error.
This operation MUST return the state of a container as specified in the State
section.

7

runtime.md#delete
config.md#poststop

Create

create <container-id> <path-to-bundle>

This operation MUST generate an error if it is not provided a path to the bundle
and the container ID to associate with the container.
If the ID provided is not unique across all containers within the scope of the
runtime, or is not valid in any other way, the implementation MUST generate
an error and a new container MUST NOT be created.
This operation MUST create a new container.

All of the properties configured in config.json except for process MUST be
applied.
process.args MUST NOT be applied until triggered by the start operation.
The remaining process properties MAY be applied by this operation.
If the runtime cannot apply a property as specified in the configuration, it MUST
generate an error and a new container MUST NOT be created.

The runtime MAY validate config.json against this spec, either generically or
with respect to the local system capabilities, before creating the container (step
2).
Runtime callers who are interested in pre-create validation can run bundle-
validation tools before invoking the create operation.

Any changes made to the config.json file after this operation will not have an
effect on the container.

Start

start <container-id>

This operation MUST generate an error if it is not provided the container ID.
Attempting to start a container that is not created MUST have no effect on
the container and MUST generate an error.
This operation MUST run the user-specified program as specified by process.
This operation MUST generate an error if process was not set.

Kill

kill <container-id> <signal>

This operation MUST generate an error if it is not provided the container ID.
Attempting to send a signal to a container that is neither created nor running
MUST have no effect on the container and MUST generate an error.
This operation MUST send the specified signal to the container process.

8

config.md
config.md#process
config.md#process
config.md
implementations.md#testing--tools
implementations.md#testing--tools
config.md
config.md#process

Delete

delete <container-id>

This operation MUST generate an error if it is not provided the container ID.
Attempting to delete a container that is not stopped MUST have no effect on
the container and MUST generate an error.
Deleting a container MUST delete the resources that were created during the
create step.
Note that resources associated with the container, but not created by this
container, MUST NOT be deleted.
Once a container is deleted its ID MAY be used by a subsequent container.

Hooks

Many of the operations specified in this specification have “hooks” that allow
for additional actions to be taken before or after each operation.
See runtime configuration for hooks for more information.

Linux Runtime

File descriptors

By default, only the stdin, stdout and stderr file descriptors are kept open
for the application by the runtime.
The runtime MAY pass additional file descriptors to the application to support
features such as socket activation.
Some of the file descriptors MAY be redirected to /dev/null even though they
are open.

Dev symbolic links

While creating the container (step 2 in the lifecycle), runtimes MUST create the
following symlinks if the source file exists after processing mounts:

Source Destination
/proc/self/fd /dev/fd
/proc/self/fd/0 /dev/stdin
/proc/self/fd/1 /dev/stdout
/proc/self/fd/2 /dev/stderr

9

./config.md#hooks
http://0pointer.de/blog/projects/socket-activated-containers.html
runtime.md#lifecycle
config.md#mounts

Configuration

This configuration file contains metadata necessary to implement standard
operations against the container.
This includes the process to run, environment variables to inject, sandboxing
features to use, etc.

The canonical schema is defined in this document, but there is a JSON Schema
in schema/config-schema.json and Go bindings in specs-go/config.go.
Platform-specific configuration schema are defined in the platform-specific docu-
ments linked below.
For properties that are only defined for some platforms, the Go property has a
platform tag listing those protocols (e.g. platform:"linux,solaris").

Below is a detailed description of each field defined in the configuration format
and valid values are specified.
Platform-specific fields are identified as such.
For all platform-specific configuration values, the scope defined below in the
Platform-specific configuration section applies.

Specification version

• ociVersion (string, REQUIRED) MUST be in SemVer v2.0.0 format and
specifies the version of the Open Container Initiative Runtime Specification
with which the bundle complies.
The Open Container Initiative Runtime Specification follows semantic
versioning and retains forward and backward compatibility within major
versions.
For example, if a configuration is compliant with version 1.1 of this speci-
fication, it is compatible with all runtimes that support any 1.1 or later
release of this specification, but is not compatible with a runtime that
supports 1.0 and not 1.1.

Example

"ociVersion": "0.1.0"

Root

root (object, OPTIONAL) specifies the container’s root filesystem.
On Windows, for Windows Server Containers, this field is REQUIRED.
For Hyper-V Containers, this field MUST NOT be set.

On all other platforms, this field is REQUIRED.

10

runtime.md#operations
runtime.md#operations
schema/config-schema.json
specs-go/config.go
spec.md#platforms
spec.md#platforms
http://semver.org/spec/v2.0.0.html
config-windows.md#hyperv

• path (string, REQUIRED) Specifies the path to the root filesystem for the
container.

– On Windows, path MUST be a volume GUID path.
– On POSIX platforms, path is either an absolute path or a relative

path to the bundle.
For example, with a bundle at /to/bundle and a root filesys-
tem at /to/bundle/rootfs, the path value can be either
/to/bundle/rootfs or rootfs.
The value SHOULD be the conventional rootfs.

A directory MUST exist at the path declared by the field.

• readonly (bool, OPTIONAL) If true then the root filesystem MUST be
read-only inside the container, defaults to false.

– On Windows, this field MUST be omitted or false.

Example (POSIX platforms)

"root": {
"path": "rootfs",
"readonly": true

}

Example (Windows)

"root": {
"path": "\\\\?\\Volume{ec84d99e-3f02-11e7-ac6c-00155d7682cf}\\"

}

Mounts

mounts (array of objects, OPTIONAL) specifies additional mounts beyond root.
The runtime MUST mount entries in the listed order.
For Linux, the parameters are as documented in mount(2) system call man page.
For Solaris, the mount entry corresponds to the ‘fs’ resource in the zonecfg(1M)
man page.

• destination (string, REQUIRED) Destination of mount point: path
inside container.
This value MUST be an absolute path.

– Windows: one mount destination MUST NOT be nested within
another mount (e.g., c:\foo and c:\foo\bar).

11

https://aka.ms/nb3hqb
http://man7.org/linux/man-pages/man2/mount.2.html
http://docs.oracle.com/cd/E86824_01/html/E54764/zonecfg-1m.

– Solaris: corresponds to “dir” of the fs resource in zonecfg(1M).

• source (string, OPTIONAL) A device name, but can also be a directory
name or a dummy.
Path values are either absolute or relative to the bundle.

– Windows: a local directory on the filesystem of the container host.
UNC paths and mapped drives are not supported.

– Solaris: corresponds to “special” of the fs resource in zonecfg(1M).

• options (array of strings, OPTIONAL) Mount options of the filesystem
to be used.

– Linux: supported options are listed in the mount(8) man page.
Note both filesystem-independent and filesystem-specific options are
listed.

– Solaris: corresponds to “options” of the fs resource in zonecfg(1M).
– Windows: runtimes MUST support ro, mounting the filesystem read-

only when ro is given.

Example (Windows)

"mounts": [
{

"destination": "C:\\folder-inside-container",
"source": "C:\\folder-on-host",
"options": ["ro"]

}
]

POSIX-platform Mounts

For POSIX platforms the mounts structure has the following fields:

• type (string, OPTIONAL) The type of the filesystem to be mounted.
• Linux: filesystem types supported by the kernel as listed in
/proc/filesystems (e.g., “minix”, “ext2”, “ext3”, “jfs”, “xfs”, “reis-
erfs”, “msdos”, “proc”, “nfs”, “iso9660”).

• Solaris: corresponds to “type” of the fs resource in zonecfg(1M).

Example (Linux)

"mounts": [
{

"destination": "/tmp",

12

http://docs.oracle.com/cd/E86824_01/html/E54764/zonecfg-1m.
http://docs.oracle.com/cd/E86824_01/html/E54764/zonecfg-1m.
http://man7.org/linux/man-pages/man8/mount.8.html
http://man7.org/linux/man-pages/man8/mount.8.html#FILESYSTEM-INDEPENDENT_MOUNT%20OPTIONS
http://man7.org/linux/man-pages/man8/mount.8.html#FILESYSTEM-SPECIFIC_MOUNT%20OPTIONS
http://docs.oracle.com/cd/E86824_01/html/E54764/zonecfg-1m.
http://docs.oracle.com/cd/E86824_01/html/E54764/zonecfg-1m.

"type": "tmpfs",
"source": "tmpfs",
"options": ["nosuid","strictatime","mode=755","size=65536k"]

},
{

"destination": "/data",
"type": "bind",
"source": "/volumes/testing",
"options": ["rbind","rw"]

}
]

Example (Solaris)

"mounts": [
{

"destination": "/opt/local",
"type": "lofs",
"source": "/usr/local",
"options": ["ro","nodevices"]

},
{

"destination": "/opt/sfw",
"type": "lofs",
"source": "/opt/sfw"

}
]

Process

process (object, OPTIONAL) specifies the container process.
This property is REQUIRED when start is called.

• terminal (bool, OPTIONAL) specifies whether a terminal is attached to
the process, defaults to false.
As an example, if set to true on Linux a pseudoterminal pair is allocated
for the process and the pseudoterminal slave is duplicated on the process’s
standard streams.

• consoleSize (object, OPTIONAL) specifies the console size in characters
of the terminal.
Runtimes MUST ignore consoleSize if terminal is false or unset.

– height (uint, REQUIRED)
– width (uint, REQUIRED)

13

runtime.md#start
http://man7.org/linux/man-pages/man3/stdin.3.html

• cwd (string, REQUIRED) is the working directory that will be set for the
executable.
This value MUST be an absolute path.

• env (array of strings, OPTIONAL) with the same semantics as IEEE Std
1003.1-2008’s environ.

• args (array of strings, REQUIRED) with similar semantics to IEEE Std
1003.1-2008 execvp’s argv.
This specification extends the IEEE standard in that at least one entry is
REQUIRED, and that entry is used with the same semantics as execvp’s
file.

POSIX process

For systems that support POSIX rlimits (for example Linux and Solaris), the
process object supports the following process-specific properties:

• rlimits (array of objects, OPTIONAL) allows setting resource limits for
the process.
Each entry has the following structure:

– type (string, REQUIRED) the platform resource being limited.
∗ Linux: valid values are defined in the getrlimit(2) man page,
such as RLIMIT_MSGQUEUE.

∗ Solaris: valid values are defined in the getrlimit(3) man page,
such as RLIMIT_CORE.

The runtime MUST generate an error for any values which cannot be
mapped to a relevant kernel interface.
For each entry in rlimits, a getrlimit(3) on type MUST succeed.
For the following properties, rlim refers to the status returned by the
getrlimit(3) call.

– soft (uint64, REQUIRED) the value of the limit enforced for the
corresponding resource.
rlim.rlim_cur MUST match the configured value.

– hard (uint64, REQUIRED) the ceiling for the soft limit that could
be set by an unprivileged process.
rlim.rlim_max MUST match the configured value.
Only a privileged process (e.g. one with the CAP_SYS_RESOURCE capa-
bility) can raise a hard limit.

If rlimits contains duplicated entries with same type, the runtime MUST
generate an error.

14

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html#tag_08_01
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html#tag_08_01
http://pubs.opengroup.org/onlinepubs/9699919799/functions/exec.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/exec.html
http://man7.org/linux/man-pages/man2/getrlimit.2.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/getrlimit.html
runtime.md#errors
http://pubs.opengroup.org/onlinepubs/9699919799/functions/getrlimit.html
runtime.md#errors

Linux Process

For Linux-based systems, the process object supports the following process-
specific properties.

• apparmorProfile (string, OPTIONAL) specifies the name of the AppAr-
mor profile for the process.
For more information about AppArmor, see AppArmor documentation.

• capabilities (object, OPTIONAL) is an object containing arrays that
specifies the sets of capabilities for the process.
Valid values are defined in the capabilities(7) man page, such as CAP_CHOWN.
Any value which cannot be mapped to a relevant kernel interface MUST
cause an error.
capabilities contains the following properties:

– effective (array of strings, OPTIONAL) the effective field is an
array of effective capabilities that are kept for the process.

– bounding (array of strings, OPTIONAL) the bounding field is an
array of bounding capabilities that are kept for the process.

– inheritable (array of strings, OPTIONAL) the inheritable field
is an array of inheritable capabilities that are kept for the process.

– permitted (array of strings, OPTIONAL) the permitted field is an
array of permitted capabilities that are kept for the process.

– ambient (array of strings, OPTIONAL) the ambient field is an array
of ambient capabilities that are kept for the process.

• noNewPrivileges (bool, OPTIONAL) setting noNewPrivileges to true
prevents the process from gaining additional privileges.
As an example, the no_new_privs article in the kernel documentation has
information on how this is achieved using a prctl system call on Linux.

• oomScoreAdj (int, OPTIONAL) adjusts the oom-killer score in
[pid]/oom_score_adj for the process’s [pid] in a proc pseudo-
filesystem.
If oomScoreAdj is set, the runtime MUST set oom_score_adj to the given
value.
If oomScoreAdj is not set, the runtime MUST NOT change the value of
oom_score_adj.
This is a per-process setting, where as disableOOMKiller is scoped for a
memory cgroup.
For more information on how these two settings work together, see the
memory cgroup documentation section 10. OOM Contol.

• selinuxLabel (string, OPTIONAL) specifies the SELinux label for the
process.
For more information about SELinux, see SELinux documentation.

15

https://wiki.ubuntu.com/AppArmor
http://man7.org/linux/man-pages/man7/capabilities.7.html
https://www.kernel.org/doc/Documentation/prctl/no_new_privs.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
config-linux.md#memory
https://www.kernel.org/doc/Documentation/cgroup-v1/memory.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/memory.txt
http://selinuxproject.org/page/Main_Page

User

The user for the process is a platform-specific structure that allows specific
control over which user the process runs as.

POSIX-platform User For POSIX platforms the user structure has the
following fields:

• uid (int, REQUIRED) specifies the user ID in the container namespace.
• gid (int, REQUIRED) specifies the group ID in the container namespace.
• additionalGids (array of ints, OPTIONAL) specifies additional group
IDs in the container namespace to be added to the process.

Note: symbolic name for uid and gid, such as uname and gname respectively,
are left to upper levels to derive (i.e. /etc/passwd parsing, NSS, etc)

Example (Linux)

"process": {
"terminal": true,
"consoleSize": {

"height": 25,
"width": 80

},
"user": {

"uid": 1,
"gid": 1,
"additionalGids": [5, 6]

},
"env": [

"PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
"TERM=xterm"

],
"cwd": "/root",
"args": [

"sh"
],
"apparmorProfile": "acme_secure_profile",
"selinuxLabel": "system_u:system_r:svirt_lxc_net_t:s0:c124,c675",
"noNewPrivileges": true,
"capabilities": {

"bounding": [
"CAP_AUDIT_WRITE",
"CAP_KILL",

16

glossary.md#container-namespace
glossary.md#container-namespace
glossary.md#container-namespace

"CAP_NET_BIND_SERVICE"
],

"permitted": [
"CAP_AUDIT_WRITE",
"CAP_KILL",
"CAP_NET_BIND_SERVICE"

],
"inheritable": [

"CAP_AUDIT_WRITE",
"CAP_KILL",
"CAP_NET_BIND_SERVICE"

],
"effective": [

"CAP_AUDIT_WRITE",
"CAP_KILL"

],
"ambient": [

"CAP_NET_BIND_SERVICE"
]

},
"rlimits": [

{
"type": "RLIMIT_NOFILE",
"hard": 1024,
"soft": 1024

}
]

}

Example (Solaris)

"process": {
"terminal": true,
"consoleSize": {

"height": 25,
"width": 80

},
"user": {

"uid": 1,
"gid": 1,
"additionalGids": [2, 8]

},
"env": [

"PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
"TERM=xterm"

17

],
"cwd": "/root",
"args": [

"/usr/bin/bash"
]

}

Windows User For Windows based systems the user structure has the fol-
lowing fields:

• username (string, OPTIONAL) specifies the user name for the process.

Example (Windows)

"process": {
"terminal": true,
"user": {

"username": "containeradministrator"
},
"env": [

"VARIABLE=1"
],
"cwd": "c:\\foo",
"args": [

"someapp.exe",
]

}

Hostname

• hostname (string, OPTIONAL) specifies the container’s hostname as seen
by processes running inside the container.
On Linux, for example, this will change the hostname in the container
UTS namespace.
Depending on your namespace configuration, the container UTS namespace
may be the runtime UTS namespace.

Example

"hostname": "mrsdalloway"

18

glossary.md#container-namespace
http://man7.org/linux/man-pages/man7/namespaces.7.html
config-linux.md#namespaces
glossary.md#runtime-namespace
http://man7.org/linux/man-pages/man7/namespaces.7.html

Platform-specific configuration

• linux (object, OPTIONAL) Linux-specific configuration.
This MAY be set if the target platform of this spec is linux.

• windows (object, OPTIONAL) Windows-specific configuration.
This MUST be set if the target platform of this spec is windows.

• solaris (object, OPTIONAL) Solaris-specific configuration.
This MAY be set if the target platform of this spec is solaris.

Example (Linux)

{
"linux": {

"namespaces": [
{

"type": "pid"
}

]
}

}

POSIX-platform Hooks

For POSIX platforms, the configuration structure supports hooks for configuring
custom actions related to the lifecycle of the container.

• hooks (object, OPTIONAL) MAY contain any of the following properties:

– prestart (array of objects, OPTIONAL) is an array of pre-start
hooks.
Entries in the array contain the following properties:

∗ path (string, REQUIRED) with similar semantics to IEEE Std
1003.1-2008 execv’s path.
This specification extends the IEEE standard in that path MUST
be absolute.

∗ args (array of strings, OPTIONAL) with the same semantics as
IEEE Std 1003.1-2008 execv’s argv.

∗ env (array of strings, OPTIONAL) with the same semantics as
IEEE Std 1003.1-2008’s environ.

∗ timeout (int, OPTIONAL) is the number of seconds before
aborting the hook.
If set, timeout MUST be greater than zero.

19

config-linux.md
config-windows.md
config-solaris.md
runtime.md#lifecycle
http://pubs.opengroup.org/onlinepubs/9699919799/functions/exec.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/exec.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/exec.html
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html#tag_08_01

– poststart (array of objects, OPTIONAL) is an array of post-start
hooks.
Entries in the array have the same schema as pre-start entries.

– poststop (array of objects, OPTIONAL) is an array of post-stop
hooks.
Entries in the array have the same schema as pre-start entries.

Hooks allow users to specify programs to run before or after various lifecycle
events.
Hooks MUST be called in the listed order.
The state of the container MUST be passed to hooks over stdin so that they
may do work appropriate to the current state of the container.

Prestart

The pre-start hooks MUST be called after the start operation is called but
before the user-specified program command is executed.
On Linux, for example, they are called after the container namespaces are created,
so they provide an opportunity to customize the container (e.g. the network
namespace could be specified in this hook).

Poststart

The post-start hooks MUST be called after the user-specified process is executed
but before the start operation returns.
For example, this hook can notify the user that the container process is spawned.

Poststop

The post-stop hooks MUST be called after the container is deleted but before
the delete operation returns.
Cleanup or debugging functions are examples of such a hook.

Example

"hooks": {
"prestart": [

{
"path": "/usr/bin/fix-mounts",
"args": ["fix-mounts", "arg1", "arg2"],
"env": ["key1=value1"]

},
{

20

runtime.md#state
runtime.md#start
runtime.md#lifecycle
runtime.md#lifecycle
runtime.md#start
runtime.md#lifecycle
runtime.md#delete

"path": "/usr/bin/setup-network"
}

],
"poststart": [

{
"path": "/usr/bin/notify-start",
"timeout": 5

}
],
"poststop": [

{
"path": "/usr/sbin/cleanup.sh",
"args": ["cleanup.sh", "-f"]

}
]

}

Annotations

annotations (object, OPTIONAL) contains arbitrary metadata for the con-
tainer.
This information MAY be structured or unstructured.
Annotations MUST be a key-value map.
If there are no annotations then this property MAY either be absent or an empty
map.

Keys MUST be strings.
Keys MUST NOT be an empty string.
Keys SHOULD be named using a reverse domain notation - e.g. ‘com.example.myKey‘.
Keys using the ‘org.opencontainers‘ namespace are reserved and MUST NOT be used by subsequent specifications.
Implementations that are reading/processing this configuration file MUST NOT generate an error if they encounter an unknown annotation key.

Values MUST be strings.
Values MAY be an empty string.

"annotations": {
"com.example.gpu-cores": "2"

}

Extensibility

Runtimes that are reading or processing this configuration file MUST NOT
generate an error if they encounter an unknown property.
Instead they MUST ignore unknown properties.

21

Valid values

Runtimes that are reading or processing this configuration file MUST generate
an error when invalid or unsupported values are encountered.
Unless support for a valid value is explicitly required, runtimes MAY choose
which subset of the valid values it will support.

Configuration Schema Example

Here is a full example config.json for reference.

{
"ociVersion": "0.5.0-dev",
"process": {

"terminal": true,
"user": {

"uid": 1,
"gid": 1,
"additionalGids": [

5,
6

]
},
"args": [

"sh"
],
"env": [

"PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
"TERM=xterm"

],
"cwd": "/",
"capabilities": {

"bounding": [
"CAP_AUDIT_WRITE",
"CAP_KILL",
"CAP_NET_BIND_SERVICE"

],
"permitted": [

"CAP_AUDIT_WRITE",
"CAP_KILL",
"CAP_NET_BIND_SERVICE"

],
"inheritable": [

"CAP_AUDIT_WRITE",
"CAP_KILL",

22

"CAP_NET_BIND_SERVICE"
],
"effective": [

"CAP_AUDIT_WRITE",
"CAP_KILL"

],
"ambient": [

"CAP_NET_BIND_SERVICE"
]

},
"rlimits": [

{
"type": "RLIMIT_CORE",
"hard": 1024,
"soft": 1024

},
{

"type": "RLIMIT_NOFILE",
"hard": 1024,
"soft": 1024

}
],
"apparmorProfile": "acme_secure_profile",
"oomScoreAdj": 100,
"selinuxLabel": "system_u:system_r:svirt_lxc_net_t:s0:c124,c675",
"noNewPrivileges": true

},
"root": {

"path": "rootfs",
"readonly": true

},
"hostname": "slartibartfast",
"mounts": [

{
"destination": "/proc",
"type": "proc",
"source": "proc"

},
{

"destination": "/dev",
"type": "tmpfs",
"source": "tmpfs",
"options": [

"nosuid",
"strictatime",
"mode=755",

23

"size=65536k"
]

},
{

"destination": "/dev/pts",
"type": "devpts",
"source": "devpts",
"options": [

"nosuid",
"noexec",
"newinstance",
"ptmxmode=0666",
"mode=0620",
"gid=5"

]
},
{

"destination": "/dev/shm",
"type": "tmpfs",
"source": "shm",
"options": [

"nosuid",
"noexec",
"nodev",
"mode=1777",
"size=65536k"

]
},
{

"destination": "/dev/mqueue",
"type": "mqueue",
"source": "mqueue",
"options": [

"nosuid",
"noexec",
"nodev"

]
},
{

"destination": "/sys",
"type": "sysfs",
"source": "sysfs",
"options": [

"nosuid",
"noexec",
"nodev"

24

]
},
{

"destination": "/sys/fs/cgroup",
"type": "cgroup",
"source": "cgroup",
"options": [

"nosuid",
"noexec",
"nodev",
"relatime",
"ro"

]
}

],
"hooks": {

"prestart": [
{

"path": "/usr/bin/fix-mounts",
"args": [

"fix-mounts",
"arg1",
"arg2"

],
"env": [

"key1=value1"
]

},
{

"path": "/usr/bin/setup-network"
}

],
"poststart": [

{
"path": "/usr/bin/notify-start",
"timeout": 5

}
],
"poststop": [

{
"path": "/usr/sbin/cleanup.sh",
"args": [

"cleanup.sh",
"-f"

]
}

25

]
},
"linux": {

"devices": [
{

"path": "/dev/fuse",
"type": "c",
"major": 10,
"minor": 229,
"fileMode": 438,
"uid": 0,
"gid": 0

},
{

"path": "/dev/sda",
"type": "b",
"major": 8,
"minor": 0,
"fileMode": 432,
"uid": 0,
"gid": 0

}
],
"uidMappings": [

{
"hostID": 1000,
"containerID": 0,
"size": 32000

}
],
"gidMappings": [

{
"hostID": 1000,
"containerID": 0,
"size": 32000

}
],
"sysctl": {

"net.ipv4.ip_forward": "1",
"net.core.somaxconn": "256"

},
"cgroupsPath": "/myRuntime/myContainer",
"resources": {

"network": {
"classID": 1048577,
"priorities": [

26

{
"name": "eth0",
"priority": 500

},
{

"name": "eth1",
"priority": 1000

}
]

},
"pids": {

"limit": 32771
},
"hugepageLimits": [

{
"pageSize": "2MB",
"limit": 9223372036854772000

}
],
"memory": {

"limit": 536870912,
"reservation": 536870912,
"swap": 536870912,
"kernel": -1,
"kernelTCP": -1,
"swappiness": 0,
"disableOOMKiller": false

},
"cpu": {

"shares": 1024,
"quota": 1000000,
"period": 500000,
"realtimeRuntime": 950000,
"realtimePeriod": 1000000,
"cpus": "2-3",
"mems": "0-7"

},
"devices": [

{
"allow": false,
"access": "rwm"

},
{

"allow": true,
"type": "c",
"major": 10,

27

"minor": 229,
"access": "rw"

},
{

"allow": true,
"type": "b",
"major": 8,
"minor": 0,
"access": "r"

}
],
"blockIO": {

"weight": 10,
"leafWeight": 10,
"weightDevice": [

{
"major": 8,
"minor": 0,
"weight": 500,
"leafWeight": 300

},
{

"major": 8,
"minor": 16,
"weight": 500

}
],
"throttleReadBpsDevice": [

{
"major": 8,
"minor": 0,
"rate": 600

}
],
"throttleWriteIOPSDevice": [

{
"major": 8,
"minor": 16,
"rate": 300

}
]

}
},
"rootfsPropagation": "slave",
"seccomp": {

"defaultAction": "SCMP_ACT_ALLOW",

28

"architectures": [
"SCMP_ARCH_X86",
"SCMP_ARCH_X32"

],
"syscalls": [

{
"names": [

"getcwd",
"chmod"

],
"action": "SCMP_ACT_ERRNO"

}
]

},
"namespaces": [

{
"type": "pid"

},
{

"type": "network"
},
{

"type": "ipc"
},
{

"type": "uts"
},
{

"type": "mount"
},
{

"type": "user"
},
{

"type": "cgroup"
}

],
"maskedPaths": [

"/proc/kcore",
"/proc/latency_stats",
"/proc/timer_stats",
"/proc/sched_debug"

],
"readonlyPaths": [

"/proc/asound",
"/proc/bus",

29

"/proc/fs",
"/proc/irq",
"/proc/sys",
"/proc/sysrq-trigger"

],
"mountLabel": "system_u:object_r:svirt_sandbox_file_t:s0:c715,c811"

},
"annotations": {

"com.example.key1": "value1",
"com.example.key2": "value2"

}
}

Linux Container Configuration

This document describes the schema for the Linux-specific section of the container
configuration.
The Linux container specification uses various kernel features like namespaces,
cgroups, capabilities, LSM, and filesystem jails to fulfill the spec.

Default Filesystems

The Linux ABI includes both syscalls and several special file paths.
Applications expecting a Linux environment will very likely expect these file
paths to be set up correctly.

The following filesystems SHOULD be made available in each container’s filesys-
tem:

Path Type
/proc proc
/sys sysfs
/dev/pts devpts
/dev/shm tmpfs

Namespaces

A namespace wraps a global system resource in an abstraction that makes it
appear to the processes within the namespace that they have their own isolated
instance of the global resource.
Changes to the global resource are visible to other processes that are members
of the namespace, but are invisible to other processes.

30

config.md#platform-specific-configuration
config.md
config.md
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt
https://www.kernel.org/doc/Documentation/filesystems/devpts.txt
https://www.kernel.org/doc/Documentation/filesystems/tmpfs.txt

For more information, see the namespaces(7) man page.

Namespaces are specified as an array of entries inside the namespaces root field.
The following parameters can be specified to set up namespaces:

• type (string, REQUIRED) - namespace type. The following namespace
types are supported:

– pid processes inside the container will only be able to see other
processes inside the same container.

– network the container will have its own network stack.
– mount the container will have an isolated mount table.
– ipc processes inside the container will only be able to communicate

to other processes inside the same container via system level IPC.
– uts the container will be able to have its own hostname and domain

name.
– user the container will be able to remap user and group IDs from

the host to local users and groups within the container.
– cgroup the container will have an isolated view of the cgroup hierarchy.

• path (string, OPTIONAL) - namespace file.
This value MUST be an absolute path in the runtime mount namespace.
The runtime MUST place the container process in the namespace associated
with that path.
The runtime MUST generate an error if path is not associated with a
namespace of type type.
If path is not specified, the runtime MUST create a new container names-
pace of type type.

If a namespace type is not specified in the namespaces array, the container
MUST inherit the runtime namespace of that type.
If a namespaces field contains duplicated namespaces with same type, the
runtime MUST generate an error.

Example

"namespaces": [
{

"type": "pid",
"path": "/proc/1234/ns/pid"

},
{

"type": "network",
"path": "/var/run/netns/neta"

},

31

http://man7.org/linux/man-pages/man7/namespaces.7.html
glossary.md#runtime-namespace
runtime.md#errors
glossary.md#container-namespace
glossary.md#container-namespace
glossary.md#runtime-namespace
runtime.md#errors

{
"type": "mount"

},
{

"type": "ipc"
},
{

"type": "uts"
},
{

"type": "user"
},
{

"type": "cgroup"
}

]

User namespace mappings

uidMappings (array of objects, OPTIONAL) describes the user namespace uid
mappings from the host to the container.
gidMappings (array of objects, OPTIONAL) describes the user namespace gid
mappings from the host to the container.

Each entry has the following structure:

• hostID (uint32, REQUIRED) - is the starting uid/gid on the host to be
mapped to containerID.

• containerID (uint32, REQUIRED) - is the starting uid/gid in the con-
tainer.

• size (uint32, REQUIRED) - is the number of ids to be mapped.

The runtime SHOULD NOT modify the ownership of referenced filesystems to
realize the mapping.
Note that the number of mapping entries MAY be limited by the [kernel][user-
namespaces].

Example

"uidMappings": [
{

"hostID": 1000,
"containerID": 0,
"size": 32000

32

}
],
"gidMappings": [

{
"hostID": 1000,
"containerID": 0,
"size": 32000

}
]

Devices

devices (array of objects, OPTIONAL) lists devices that MUST be available in
the container.
The runtime MAY supply them however it likes (with mknod, by bind mounting
from the runtime mount namespace, using symlinks, etc.).

Each entry has the following structure:

• type (string, REQUIRED) - type of device: c, b, u or p.
More info in mknod(1).

• path (string, REQUIRED) - full path to device inside container.
If a file already exists at path that does not match the requested device,
the runtime MUST generate an error.

• major, minor (int64, REQUIRED unless type is p) - major, minor num-
bers for the device.

• fileMode (uint32, OPTIONAL) - file mode for the device.
You can also control access to devices with cgroups.

• uid (uint32, OPTIONAL) - id of device owner.
• gid (uint32, OPTIONAL) - id of device group.

The same type, major and minor SHOULD NOT be used for multiple devices.

Example

"devices": [
{

"path": "/dev/fuse",
"type": "c",
"major": 10,
"minor": 229,
"fileMode": 438,
"uid": 0,
"gid": 0

33

http://man7.org/linux/man-pages/man2/mknod.2.html
http://man7.org/linux/man-pages/man1/mknod.1.html
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap03.html#tag_03_164
https://www.kernel.org/doc/Documentation/admin-guide/devices.txt
https://www.kernel.org/doc/Documentation/admin-guide/devices.txt

},
{

"path": "/dev/sda",
"type": "b",
"major": 8,
"minor": 0,
"fileMode": 432,
"uid": 0,
"gid": 0

}
]

Default Devices

In addition to any devices configured with this setting, the runtime MUST also
supply:

• /dev/null
• [/dev/zero][zero.4]
• /dev/full
• /dev/random
• /dev/urandom
• [/dev/tty][tty.4]
• /dev/console is set up if terminal is enabled in the config by bind mounting
the pseudoterminal slave to /dev/console.

• /dev/ptmx.
A bind-mount or symlink of the container’s /dev/pts/ptmx.

Control groups

Also known as cgroups, they are used to restrict resource usage for a container
and handle device access.
cgroups provide controls (through controllers) to restrict cpu, memory, IO, pids
and network for the container.
For more information, see the kernel cgroups documentation.

Cgroups Path

cgroupsPath (string, OPTIONAL) path to the cgroups.
It can be used to either control the cgroups hierarchy for containers or to run a
new process in an existing container.

The value of cgroupsPath MUST be either an absolute path or a relative path.

34

http://man7.org/linux/man-pages/man4/null.4.html
http://man7.org/linux/man-pages/man4/full.4.html
http://man7.org/linux/man-pages/man
http://man7.org/linux/man-pages/man
http://man7.org/linux/man-pages/man4/console.4.html
http://man7.org/linux/man-pages/man4/pts.4.html
https://www.kernel.org/doc/Documentation/filesystems/devpts.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt

• In the case of an absolute path (starting with /), the runtime MUST take
the path to be relative to the cgroups mount point.

• In the case of a relative path (not starting with /), the runtime MAY
interpret the path relative to a runtime-determined location in the cgroups
hierarchy.

If the value is specified, the runtime MUST consistently attach to the same place
in the cgroups hierarchy given the same value of cgroupsPath.
If the value is not specified, the runtime MAY define the default cgroups path.
Runtimes MAY consider certain cgroupsPath values to be invalid, and MUST
generate an error if this is the case.

Implementations of the Spec can choose to name cgroups in any manner.
The Spec does not include naming schema for cgroups.
The Spec does not support per-controller paths for the reasons discussed in the
cgroupv2 documentation.
The cgroups will be created if they don’t exist.

You can configure a container’s cgroups via the resources field of the Linux
configuration.
Do not specify resources unless limits have to be updated.
For example, to run a new process in an existing container without updating
limits, resources need not be specified.

Runtimes MAY attach the container process to additional cgroup controllers
beyond those necessary to fulfill the resources settings.

Example

"cgroupsPath": "/myRuntime/myContainer",
"resources": {

"memory": {
"limit": 100000,
"reservation": 200000
},
"devices": [

{
"allow": false,
"access": "rwm"

}
]

}

35

https://www.kernel.org/doc/Documentation/cgroup-v2.txt

Device whitelist

devices (array of objects, OPTIONAL) configures the device whitelist.
The runtime MUST apply entries in the listed order.

Each entry has the following structure:

• allow (boolean, REQUIRED) - whether the entry is allowed or denied.
• type (string, OPTIONAL) - type of device: a (all), c (char), or b (block).
Unset values mean “all”, mapping to a.

• major, minor (int64, OPTIONAL) - major, minor numbers for the device.
Unset values mean “all”, mapping to * in the filesystem API.

• access (string, OPTIONAL) - cgroup permissions for device.
A composition of r (read), w (write), and m (mknod).

Example

"devices": [
{

"allow": false,
"access": "rwm"

},
{

"allow": true,
"type": "c",
"major": 10,
"minor": 229,
"access": "rw"

},
{

"allow": true,
"type": "b",
"major": 8,
"minor": 0,
"access": "r"

}
]

Memory

memory (object, OPTIONAL) represents the cgroup subsystem memory and it’s
used to set limits on the container’s memory usage.
For more information, see the kernel cgroups documentation about memory.

Values for memory specify the limit in bytes, or -1 for unlimited memory.

36

https://www.kernel.org/doc/Documentation/cgroup-v1/devices.txt
https://www.kernel.org/doc/Documentation/admin-guide/devices.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/devices.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/memory.txt

• limit (int64, OPTIONAL) - sets limit of memory usage
• reservation (int64, OPTIONAL) - sets soft limit of memory usage
• swap (int64, OPTIONAL) - sets limit of memory+Swap usage
• kernel (int64, OPTIONAL) - sets hard limit for kernel memory
• kernelTCP (int64, OPTIONAL) - sets hard limit for kernel TCP buffer

memory

The following properties do not specify memory limits, but are covered by the
memory controller:

• swappiness (uint64, OPTIONAL) - sets swappiness parameter of vmscan
(See sysctl’s vm.swappiness)
The values are from 0 to 100. Higher means more swappy.

• disableOOMKiller (bool, OPTIONAL) - enables or disables the OOM
killer.
If enabled (false), tasks that attempt to consume more memory than
they are allowed are immediately killed by the OOM killer.
The OOM killer is enabled by default in every cgroup using the memory
subsystem.
To disable it, specify a value of true.

Example

"memory": {
"limit": 536870912,
"reservation": 536870912,
"swap": 536870912,
"kernel": -1,
"kernelTCP": -1,
"swappiness": 0,
"disableOOMKiller": false

}

CPU

cpu (object, OPTIONAL) represents the cgroup subsystems cpu and cpusets.
For more information, see the kernel cgroups documentation about cpusets.

The following parameters can be specified to set up the controller:

• shares (uint64, OPTIONAL) - specifies a relative share of CPU time
available to the tasks in a cgroup

37

https://www.kernel.org/doc/Documentation/cgroup-v1/cpusets.txt

• quota (int64, OPTIONAL) - specifies the total amount of time in mi-
croseconds for which all tasks in a cgroup can run during one period (as
defined by period below)

• period (uint64, OPTIONAL) - specifies a period of time in microseconds
for how regularly a cgroup’s access to CPU resources should be reallocated
(CFS scheduler only)

• realtimeRuntime (int64, OPTIONAL) - specifies a period of time in
microseconds for the longest continuous period in which the tasks in a
cgroup have access to CPU resources

• realtimePeriod (uint64, OPTIONAL) - same as period but applies to
realtime scheduler only

• cpus (string, OPTIONAL) - list of CPUs the container will run in
• mems (string, OPTIONAL) - list of Memory Nodes the container will run
in

Example

"cpu": {
"shares": 1024,
"quota": 1000000,
"period": 500000,
"realtimeRuntime": 950000,
"realtimePeriod": 1000000,
"cpus": "2-3",
"mems": "0-7"

}

Block IO

blockIO (object, OPTIONAL) represents the cgroup subsystem blkio which
implements the block IO controller.
For more information, see the kernel cgroups documentation about blkio.

The following parameters can be specified to set up the controller:

• weight (uint16, OPTIONAL) - specifies per-cgroup weight. This is default
weight of the group on all devices until and unless overridden by per-device
rules.

• leafWeight (uint16, OPTIONAL) - equivalents of weight for the purpose
of deciding how much weight tasks in the given cgroup has while competing
with the cgroup’s child cgroups.

• weightDevice (array of objects, OPTIONAL) - an array of per-device
bandwidth weights.
Each entry has the following structure:

38

https://www.kernel.org/doc/Documentation/cgroup-v1/blkio-controller.txt

– major, minor (int64, REQUIRED) - major, minor numbers for de-
vice.
For more information, see the mknod(1) man page.

– weight (uint16, OPTIONAL) - bandwidth weight for the device.
– leafWeight (uint16, OPTIONAL) - bandwidth weight for the device

while competing with the cgroup’s child cgroups, CFQ scheduler only

You MUST specify at least one of weight or leafWeight in a given entry,
and MAY specify both.

• throttleReadBpsDevice, throttleWriteBpsDevice (array of objects,
OPTIONAL) - an array of per-device bandwidth rate limits.
Each entry has the following structure:

– major, minor (int64, REQUIRED) - major, minor numbers for de-
vice.
For more information, see the mknod(1) man page.

– rate (uint64, REQUIRED) - bandwidth rate limit in bytes per second
for the device

• throttleReadIOPSDevice, throttleWriteIOPSDevice (array of objects,
OPTIONAL) - an array of per-device IO rate limits.
Each entry has the following structure:

– major, minor (int64, REQUIRED) - major, minor numbers for de-
vice.
For more information, see the mknod(1) man page.

– rate (uint64, REQUIRED) - IO rate limit for the device

Example

"blockIO": {
"weight": 10,
"leafWeight": 10,
"weightDevice": [

{
"major": 8,
"minor": 0,
"weight": 500,
"leafWeight": 300

},
{

"major": 8,
"minor": 16,
"weight": 500

}
],
"throttleReadBpsDevice": [

39

http://man7.org/linux/man-pages/man1/mknod.1.html
http://man7.org/linux/man-pages/man1/mknod.1.html
http://man7.org/linux/man-pages/man1/mknod.1.html

{
"major": 8,
"minor": 0,
"rate": 600

}
],
"throttleWriteIOPSDevice": [

{
"major": 8,
"minor": 16,
"rate": 300

}
]

}

Huge page limits

hugepageLimits (array of objects, OPTIONAL) represents the hugetlb con-
troller which allows to limit the
HugeTLB usage per control group and enforces the controller limit during page
fault.
For more information, see the kernel cgroups documentation about HugeTLB.

Each entry has the following structure:

• pageSize (string, REQUIRED) - hugepage size
• limit (uint64, REQUIRED) - limit in bytes of hugepagesize HugeTLB
usage

Example

"hugepageLimits": [
{

"pageSize": "2MB",
"limit": 209715200

}
]

Network

network (object, OPTIONAL) represents the cgroup subsystems net_cls and
net_prio.
For more information, see the kernel cgroups documentations about net_cls
cgroup and net_prio cgroup.

40

https://www.kernel.org/doc/Documentation/cgroup-v1/hugetlb.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/net_cls.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/net_cls.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/net_prio.txt

The following parameters can be specified to set up the controller:

• classID (uint32, OPTIONAL) - is the network class identifier the cgroup’s
network packets will be tagged with

• priorities (array of objects, OPTIONAL) - specifies a list of objects of
the priorities assigned to traffic originating from processes in the group
and egressing the system on various interfaces.
The following parameters can be specified per-priority:

– name (string, REQUIRED) - interface name in runtime network names-
pace

– priority (uint32, REQUIRED) - priority applied to the interface

Example

"network": {
"classID": 1048577,
"priorities": [

{
"name": "eth0",
"priority": 500

},
{

"name": "eth1",
"priority": 1000

}
]

}

PIDs

pids (object, OPTIONAL) represents the cgroup subsystem pids.
For more information, see the kernel cgroups documentation about pids.

The following parameters can be specified to set up the controller:

• limit (int64, REQUIRED) - specifies the maximum number of tasks in
the cgroup

Example

"pids": {
"limit": 32771

}

41

glossary.md#runtime-namespace
glossary.md#runtime-namespace
https://www.kernel.org/doc/Documentation/cgroup-v1/pids.txt

IntelRdt

intelRdt (object, OPTIONAL) represents the [Intel Resource Director
Technology][intel-rdt-cat-kernel-interface].
If intelRdt is set, the runtime MUST write the container process ID to the
<container-id>/tasks file in a mounted resctrl pseudo-filesystem, using
the container ID from start and creating the <container-id> directory if
necessary.
If no mounted resctrl pseudo-filesystem is available in the runtime mount
namespace, the runtime MUST generate an error.

If ‘intelRdt‘ is not set, the runtime MUST NOT manipulate any ‘resctrl‘ pseudo-filesystems.

The following parameters can be specified for the container:

• l3CacheSchema (string, OPTIONAL) - specifies the schema for L3 cache
id and capacity bitmask (CBM).
If l3CacheSchema is set, runtimes MUST write the value to the schemata
file in the <container-id> directory discussed in intelRdt.
If l3CacheSchema is not set, runtimes MUST NOT write to schemata files
in any resctrl pseudo-filesystems.

Example

Consider a two-socket machine with two L3 caches where the default CBM is
0xfffff and the max CBM length is 20 bits.
Tasks inside the container only have access to the “upper” 80% of L3 cache id 0
and the “lower” 50% L3 cache id 1:

"linux": {
"intelRdt": {

"l3CacheSchema": "L3:0=ffff0;1=3ff"
}

}

Sysctl

sysctl (object, OPTIONAL) allows kernel parameters to be modified at runtime
for the container.
For more information, see the [sysctl(8)][sysctl.8] man page.

42

runtime.md#start
glossary.md#runtime-namespace
glossary.md#runtime-namespace
runtime.md#errors

Example

"sysctl": {
"net.ipv4.ip_forward": "1",
"net.core.somaxconn": "256"

}

Seccomp

Seccomp provides application sandboxing mechanism in the Linux kernel.
Seccomp configuration allows one to configure actions to take for matched syscalls
and furthermore also allows matching on values passed as arguments to syscalls.
For more information about Seccomp, see Seccomp kernel documentation.
The actions, architectures, and operators are strings that match the definitions
in seccomp.h from libseccomp and are translated to corresponding values.

seccomp (object, OPTIONAL)

The following parameters can be specified to set up seccomp:

• defaultAction (string, REQUIRED) - the default action for seccomp.
Allowed values are the same as syscalls[].action.

• architectures (array of strings, OPTIONAL) - the architecture used for
system calls.
A valid list of constants as of libseccomp v2.3.2 is shown below.

– SCMP_ARCH_X86
– SCMP_ARCH_X86_64
– SCMP_ARCH_X32
– SCMP_ARCH_ARM
– SCMP_ARCH_AARCH64
– SCMP_ARCH_MIPS
– SCMP_ARCH_MIPS64
– SCMP_ARCH_MIPS64N32
– SCMP_ARCH_MIPSEL
– SCMP_ARCH_MIPSEL64
– SCMP_ARCH_MIPSEL64N32
– SCMP_ARCH_PPC
– SCMP_ARCH_PPC64
– SCMP_ARCH_PPC64LE
– SCMP_ARCH_S390
– SCMP_ARCH_S390X
– SCMP_ARCH_PARISC
– SCMP_ARCH_PARISC64

43

https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
https://github.com/seccomp/libseccomp

• syscalls (array of objects, OPTIONAL) - match a syscall in seccomp.
While this property is OPTIONAL, some values of defaultAction are
not useful without syscalls entries.
For example, if defaultAction is SCMP_ACT_KILL and syscalls is empty
or unset, the kernel will kill the container process on its first syscall.
Each entry has the following structure:

– names (array of strings, REQUIRED) - the names of the syscalls.
names MUST contain at least one entry.

– action (string, REQUIRED) - the action for seccomp rules.
A valid list of constants as of libseccomp v2.3.2 is shown below.

∗ SCMP_ACT_KILL
∗ SCMP_ACT_TRAP
∗ SCMP_ACT_ERRNO
∗ SCMP_ACT_TRACE
∗ SCMP_ACT_ALLOW

– args (array of objects, OPTIONAL) - the specific syscall in seccomp.
Each entry has the following structure:

∗ index (uint, REQUIRED) - the index for syscall arguments in
seccomp.

∗ value (uint64, REQUIRED) - the value for syscall arguments in
seccomp.

∗ valueTwo (uint64, OPTIONAL) - the value for syscall arguments
in seccomp.

∗ op (string, REQUIRED) - the operator for syscall arguments in
seccomp.
A valid list of constants as of libseccomp v2.3.2 is shown below.

· SCMP_CMP_NE
· SCMP_CMP_LT
· SCMP_CMP_LE
· SCMP_CMP_EQ
· SCMP_CMP_GE
· SCMP_CMP_GT
· SCMP_CMP_MASKED_EQ

Example

"seccomp": {
"defaultAction": "SCMP_ACT_ALLOW",
"architectures": [

"SCMP_ARCH_X86",

44

"SCMP_ARCH_X32"
],
"syscalls": [

{
"names": [

"getcwd",
"chmod"

],
"action": "SCMP_ACT_ERRNO"

}
]

}

Rootfs Mount Propagation

rootfsPropagation (string, OPTIONAL) sets the rootfs’s mount propagation.
Its value is either slave, private, shared or unbindable.
The Shared Subtrees article in the kernel documentation has more information
about mount propagation.

Example

"rootfsPropagation": "slave",

Masked Paths

maskedPaths (array of strings, OPTIONAL) will mask over the provided paths
inside the container so that they cannot be read.
The values MUST be absolute paths in the container namespace.

Example

"maskedPaths": [
"/proc/kcore"

]

Readonly Paths

readonlyPaths (array of strings, OPTIONAL) will set the provided paths as
readonly inside the container.
The values MUST be absolute paths in the container namespace.

45

https://www.kernel.org/doc/Documentation/filesystems/sharedsubtree.txt
glossary.md#container_namespace
glossary.md#container-namespace

Example

"readonlyPaths": [
"/proc/sys"

]

Mount Label

mountLabel (string, OPTIONAL) will set the Selinux context for the mounts in
the container.

Example

"mountLabel": "system_u:object_r:svirt_sandbox_file_t:s0:c715,c811"

Solaris Application Container Configuration

Solaris application containers can be configured using the following properties, all
of the below properties have mappings to properties specified under zonecfg(1M)
man page, except milestone.

milestone

The SMF(Service Management Facility) FMRI which should go to “online” state
before we start the desired process within the container.

milestone (string, OPTIONAL)

Example

"milestone": "svc:/milestone/container:default"

limitpriv

The maximum set of privileges any process in this container can obtain.
The property should consist of a comma-separated privilege set specification as
described in priv_str_to_set(3C) man page for the respective release of Solaris.

limitpriv (string, OPTIONAL)

46

http://docs.oracle.com/cd/E86824_01/html/E54764/zonecfg-1m.html
http://docs.oracle.com/cd/E86824_01/html/E54766/priv-str-to-set-3c.html

Example

"limitpriv": "default"

maxShmMemory

The maximum amount of shared memory allowed for this application container.
A scale (K, M, G, T) can be applied to the value for each of these numbers (for
example, 1M is one megabyte).
Mapped to max-shm-memory in zonecfg(1M) man page.

maxShmMemory (string, OPTIONAL)

Example

"maxShmMemory": "512m"

cappedCPU

Sets a limit on the amount of CPU time that can be used by a container.
The unit used translates to the percentage of a single CPU that can be used by
all user threads in a container, expressed as a fraction (for example, .75) or a
mixed number (whole number and fraction, for example, 1.25).
An ncpu value of 1 means 100% of a CPU, a value of 1.25 means 125%, .75 mean
75%, and so forth.
When projects within a capped container have their own caps, the minimum
value takes precedence.
cappedCPU is mapped to capped-cpu in zonecfg(1M) man page.

• ncpus (string, OPTIONAL)

Example

"cappedCPU": {
"ncpus": "8"

}

cappedMemory

The physical and swap caps on the memory that can be used by this application
container.
A scale (K, M, G, T) can be applied to the value for each of these numbers (for

47

http://docs.oracle.com/cd/E86824_01/html/E54764/zonecfg-1m.html
http://docs.oracle.com/cd/E86824_01/html/E54764/zonecfg-1m.html

example, 1M is one megabyte).
cappedMemory is mapped to capped-memory in zonecfg(1M) man page.

• physical (string, OPTIONAL)
• swap (string, OPTIONAL)

Example

"cappedMemory": {
"physical": "512m",
"swap": "512m"

}

Network

Automatic Network (anet)

anet is specified as an array that is used to set up networking for Solaris applica-
tion containers.
The anet resource represents the automatic creation of a network resource for
an application container.
The zones administration daemon, zoneadmd, is the primary process for manag-
ing the container’s virtual platform.
One of the daemon’s responsibilities is creation and teardown of the networks
for the container.
For more information on the daemon see the zoneadmd(1M) man page.
When such a container is started, a temporary VNIC(Virtual NIC) is automati-
cally created for the container.
The VNIC is deleted when the container is torn down.
The following properties can be used to set up automatic networks.
For additional information on properties, check the zonecfg(1M) man page for
the respective release of Solaris.

• linkname (string, OPTIONAL) Specify a name for the automatically
created VNIC datalink.

• lowerLink (string, OPTIONAL) Specify the link over which the VNIC
will be created.
Mapped to lower-link in the zonecfg(1M) man page.

• allowedAddress (string, OPTIONAL) The set of IP addresses that the
container can use might be constrained by specifying the allowedAddress
property.
If allowedAddress has not been specified, then they can use any IP
address on the associated physical interface for the network resource.

48

http://docs.oracle.com/cd/E86824_01/html/E54764/zonecfg-1m.html
http://docs.oracle.com/cd/E86824_01/html/E54764/zoneadmd-1m.html
http://docs.oracle.com/cd/E86824_01/html/E54764/zonecfg-1m.html
http://docs.oracle.com/cd/E86824_01/html/E54764/zonecfg-1m.html

Otherwise, when allowedAddress is specified, the container cannot use IP
addresses that are not in the allowedAddress list for the physical address.
Mapped to allowed-address in the zonecfg(1M) man page.

• configureAllowedAddress (string, OPTIONAL) If configureAllowedAddress
is set to true, the addresses specified by allowedAddress are automatically
configured on the interface each time the container starts.
When it is set to false, the allowedAddress will not be configured on
container start.
Mapped to configure-allowed-address in the zonecfg(1M) man page.

• defrouter (string, OPTIONAL) The value for the OPTIONAL default
router.

• macAddress (string, OPTIONAL) Set the VNIC’s MAC addresses based
on the specified value or keyword.
If not a keyword, it is interpreted as a unicast MAC address.
For a list of the supported keywords please refer to the zonecfg(1M) man
page of the respective Solaris release.
Mapped to mac-address in the zonecfg(1M) man page.

• linkProtection (string, OPTIONAL) Enables one or more types of link
protection using comma-separated values.
See the protection property in dladm(8) for supported values in respective
release of Solaris.
Mapped to link-protection in the zonecfg(1M) man page.

Example

"anet": [
{

"allowedAddress": "172.17.0.2/16",
"configureAllowedAddress": "true",
"defrouter": "172.17.0.1/16",
"linkProtection": "mac-nospoof, ip-nospoof",
"linkname": "net0",
"lowerLink": "net2",
"macAddress": "02:42:f8:52:c7:16"

}
]

Glossary

Bundle

A directory structure that is written ahead of time, distributed, and used to seed
the runtime for creating a container and launching a process within it.

49

http://docs.oracle.com/cd/E86824_01/html/E54764/zonecfg-1m.html
http://docs.oracle.com/cd/E86824_01/html/E54764/zonecfg-1m.html
http://docs.oracle.com/cd/E86824_01/html/E54764/zonecfg-1m.html
http://docs.oracle.com/cd/E86824_01/html/E54764/zonecfg-1m.html
http://docs.oracle.com/cd/E86824_01/html/E54764/zonecfg-1m.html
bundle.md

Configuration

The config.json file in a bundle which defines the intended container and
container process.

Container

An environment for executing processes with configurable isolation and resource
limitations.
For example, namespaces, resource limits, and mounts are all part of the container
environment.

Container namespace

On Linux,the namespaces in which the configured process executes.

JSON

All configuration JSON MUST be encoded in UTF-8.
JSON objects MUST NOT include duplicate names.
The order of entries in JSON objects is not significant.

Runtime

An implementation of this specification.
It reads the configuration files from a bundle, uses that information to create a
container, launches a process inside the container, and performs other lifecycle
actions.

Runtime namespace

On Linux, the namespaces from which new container namespaces are created
and from which some configured resources are accessed.

50

config.md
http://man7.org/linux/man-pages/man7/namespaces.7.html
config.md#process
https://tools.ietf.org/html/rfc7159
http://www.unicode.org/versions/Unicode8.0.0/ch03.pdf
runtime.md
runtime.md
config-linux.md#namespaces

	Open Container Initiative Runtime Specification
	Abstract
	Platforms
	Table of Contents
	Notational Conventions
	The 5 principles of Standard Containers
	1. Standard operations
	2. Content-agnostic
	3. Infrastructure-agnostic
	4. Designed for automation
	5. Industrial-grade delivery

	Filesystem Bundle
	Container Format

	Runtime and Lifecycle
	Scope of a Container
	State
	Lifecycle
	Errors
	Warnings
	Operations
	Query State
	Create
	Start
	Kill
	Delete

	Hooks

	Linux Runtime
	File descriptors
	 Dev symbolic links

	Configuration
	Specification version
	Example

	Root
	Example (POSIX platforms)
	Example (Windows)

	Mounts
	Example (Windows)
	POSIX-platform Mounts
	Example (Linux)
	Example (Solaris)

	Process
	POSIX process
	Linux Process
	User
	Example (Linux)
	Example (Solaris)
	Example (Windows)

	Hostname
	Example

	Platform-specific configuration
	Example (Linux)

	POSIX-platform Hooks
	Prestart
	Poststart
	Poststop
	Example

	Annotations
	Extensibility
	Valid values
	Configuration Schema Example

	Linux Container Configuration
	Default Filesystems
	Namespaces
	Example

	User namespace mappings
	Example

	Devices
	Example
	Default Devices

	Control groups
	Cgroups Path
	Example
	Device whitelist
	Memory
	CPU
	Block IO
	Huge page limits
	Network
	PIDs

	IntelRdt
	Example

	Sysctl
	Example

	Seccomp
	Example

	Rootfs Mount Propagation
	Example

	Masked Paths
	Example

	Readonly Paths
	Example

	Mount Label
	Example

	Solaris Application Container Configuration
	milestone
	Example

	limitpriv
	Example

	maxShmMemory
	Example

	cappedCPU
	Example

	cappedMemory
	Example

	Network
	Automatic Network (anet)

	Glossary
	Bundle
	Configuration
	Container
	Container namespace
	JSON
	Runtime
	Runtime namespace

