
Open Container Initiative

Image Format Specification

This specification defines an OCI Image, consisting of a manifest, an image
index (optional), a set of filesystem layers, and a configuration.

The goal of this specification is to enable the creation of interoperable tools for
building, transporting, and preparing a container image to run.

Table of Contents

• Introduction
• Notational Conventions
• Overview

– Understanding the Specification
– Media Types

• Content Descriptors
• Image Layout
• Image Manifest
• Image Index
• Filesystem Layers
• Image Configuration
• Annotations
• Conversion
• Considerations

– Extensibility
– Canonicalization

Notational Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL
NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “NOT RECOM-
MENDED”, “MAY”, and “OPTIONAL” are to be interpreted as described in
RFC 2119 (Bradner, S., “Key words for use in RFCs to Indicate Requirement
Levels”, BCP 14, RFC 2119, March 1997).

The key words “unspecified”, “undefined”, and “implementation-defined” are to
be interpreted as described in the rationale for the C99 standard.

An implementation is not compliant if it fails to satisfy one or more of the
MUST, MUST NOT, REQUIRED, SHALL, or SHALL NOT requirements for
the protocols it implements.

1

manifest.md
image-index.md
image-index.md
layer.md
config.md
spec.md
media-types.md
descriptor.md
image-layout.md
manifest.md
image-index.md
layer.md
config.md
annotations.md
conversion.md
considerations.md
considerations.md#extensibility
considerations.md#canonicalization
http://tools.ietf.org/html/rfc2119
http://www.open-std.org/jtc1/sc22/wg14/www/C99RationaleV5.10.pdf#page=18

An implementation is compliant if it satisfies all the MUST, MUST NOT, RE-
QUIRED, SHALL, and SHALL NOT requirements for the protocols it imple-
ments.

Overview

At a high level the image manifest contains metadata about the contents and
dependencies of the image including the content-addressable identity of one or
more filesystem layer changeset archives that will be unpacked to make up the
final runnable filesystem.
The image configuration includes information such as application arguments,
environments, etc.
The image index is a higher-level manifest which points to a list of manifests
and descriptors.
Typically, these manifests may provide different implementations of the image,
possibly varying by platform or other attributes.

Once built the OCI Image can then be discovered by name, downloaded, veri-
fied by hash, trusted through a signature, and unpacked into an OCI Runtime
Bundle.

2

layer.md
https://github.com/opencontainers/runtime-spec/blob/master/bundle.md
https://github.com/opencontainers/runtime-spec/blob/master/bundle.md

Understanding the Specification

The OCI Image Media Types document is a starting point to understanding the
overall structure of the specification.

The high-level components of the spec include:

• Image Manifest - a document describing the components that make up a
container image

• Image Index - an annotated index of image manifests
• Image Layout - a filesystem layout representing the contents of an image
• Filesystem Layer - a changeset that describes a container’s filesystem
• Image Configuration - a document determining layer ordering and config-

uration of the image suitable for translation into a runtime bundle
• Conversion - a document describing how this translation should occur
• Descriptor - a reference that describes the type, metadata and content

address of referenced content

Future versions of this specification may include the following OPTIONAL fea-
tures:

• Signatures that are based on signing image content address
• Naming that is federated based on DNS and can be delegated

OCI Image Media Types

The following media types identify the formats described here and their refer-
enced resources:

• application/vnd.oci.descriptor.v1+json: Content Descriptor
• application/vnd.oci.layout.header.v1+json: OCI Layout
• application/vnd.oci.image.index.v1+json: Image Index
• application/vnd.oci.image.manifest.v1+json: Image manifest
• application/vnd.oci.image.config.v1+json: Image config
• application/vnd.oci.image.layer.v1.tar: “Layer”, as a tar archive
• application/vnd.oci.image.layer.v1.tar+gzip: “Layer”, as a tar

archive compressed with gzip
• application/vnd.oci.image.layer.nondistributable.v1.tar:

“Layer”, as a tar archive with distribution restrictions
• application/vnd.oci.image.layer.nondistributable.v1.tar+gzip:

“Layer”, as a tar archive with distribution restrictions compressed with
gzip

3

media-types.md
manifest.md
image-index.md
image-layout.md
layer.md
config.md
https://github.com/opencontainers/runtime-spec
conversion.md
descriptor.md
descriptor.md
image-layout.md#oci-layout-file
image-index.md
manifest.md#image-manifest
config.md
layer.md
layer.md#gzip-media-types
layer.md#gzip-media-types
https://tools.ietf.org/html/rfc1952
layer.md#non-distributable-layers
layer.md#gzip-media-types
https://tools.ietf.org/html/rfc1952

Media Type Conflicts

Blob retrieval methods MAY return media type metadata.
For example, a HTTP response might return a manifest with the Content-Type
header set to application/vnd.oci.image.manifest.v1+json.
Implementations MAY also have expectations for the blob’s media type and
digest (e.g. from a descriptor referencing the blob).

• Implementations that do not have an expected media type for the blob
SHOULD respect the returned media type.

• Implementations that have an expected media type which matches the
returned media type SHOULD respect the matched media type.

• Implementations that have an expected media type which does not match
the returned media type SHOULD:

– Respect the expected media type if the blob matches the expected
digest.
Implementations MAY warn about the media type mismatch.

– Return an error if the blob does not match the expected digest (as
recommended for descriptors).

– Return an error if they do not have an expected digest.

Compatibility Matrix

The OCI Image Specification strives to be backwards and forwards compatible
when possible.
Breaking compatibility with existing systems creates a burden on users whether
they are build systems, distribution systems, container engines, etc.
This section shows where the OCI Image Specification is compatible with for-
mats external to the OCI Image and different versions of this specification.

application/vnd.oci.image.index.v1+json

Similar/related schema

• application/vnd.docker.distribution.manifest.list.v2+json - mediaType is
different

application/vnd.oci.image.manifest.v1+json

Similar/related schema

• application/vnd.docker.distribution.manifest.v2+json

4

image-layout.md
descriptor.md
descriptor.md#properties
https://github.com/docker/distribution/blob/master/docs/spec/manifest-v2-2.md#manifest-list
https://github.com/docker/distribution/blob/master/docs/spec/manifest-v2-2.md#image-manifest-field-descriptions

application/vnd.oci.image.layer.v1.tar+gzip

Interchangeable and fully compatible mime-types

• application/vnd.docker.image.rootfs.diff.tar.gzip

application/vnd.oci.image.config.v1+json

Similar/related schema

• application/vnd.docker.container.image.v1+json

Relations

The following figure shows how the above media types reference each other:

Descriptors are used for all references.
The image-index being a “fat manifest” references a list of image manifests per
target platform. An image manifest references exactly one target configuration
and possibly many layers.

OCI Content Descriptors

• An OCI image consists of several different components, arranged in a
Merkle Directed Acyclic Graph (DAG).

• References between components in the graph are expressed through Con-
tent Descriptors.

• A Content Descriptor (or simply Descriptor) describes the disposition of
the targeted content.

5

https://github.com/docker/docker/blob/master/image/spec/v1.md#creating-an-image-filesystem-changeset
https://github.com/docker/docker/blob/master/image/spec/v1.md#image-json-description
descriptor.md
https://en.wikipedia.org/wiki/Merkle_tree

• A Content Descriptor includes the type of the content, a content identifier
(digest), and the byte-size of the raw content.

• Descriptors SHOULD be embedded in other formats to securely reference
external content.

• Other formats SHOULD use descriptors to securely reference external con-
tent.

This section defines the application/vnd.oci.descriptor.v1+json media
type.

Properties

A descriptor consists of a set of properties encapsulated in key-value fields.

The following fields contain the primary properties that constitute a Descriptor:

• mediaType string

This REQUIRED property contains the media type of the referenced content.
Values MUST comply with RFC 6838, including the naming requirements in its
section 4.2.

The OCI image specification defines several of its own MIME types for resources
defined in the specification.

• digest string

This REQUIRED property is the digest of the targeted content, conforming to
the requirements outlined in Digests and Verification.
Retrieved content SHOULD be verified against this digest when consumed via
untrusted sources.

• size int64

This REQUIRED property specifies the size, in bytes, of the raw content.
This property exists so that a client will have an expected size for the content
before processing.
If the length of the retrieved content does not match the specified length, the
content SHOULD NOT be trusted.

• urls array of strings

6

media-types.md
media-types.md
https://tools.ietf.org/html/rfc6838
https://tools.ietf.org/html/rfc6838#section-4.2
https://tools.ietf.org/html/rfc6838#section-4.2
media-types.md

This OPTIONAL property specifies a list of URIs from which this object MAY
be downloaded.
Each entry MUST conform to RFC 3986.
Entries SHOULD use the http and https schemes, as defined in RFC 7230.

• annotations string-string map
This OPTIONAL property contains arbitrary metadata for this descriptor.
This OPTIONAL property MUST use the annotation rules.

Descriptors pointing to application/vnd.oci.image.manifest.v1+json
SHOULD include the extended field platform, see Image Index Property
Descriptions for details.

Reserved

The following field keys are reserved and MUST NOT be used by other specifi-
cations.

• data string

This key is RESERVED for future versions of the specification.

All other fields may be included in other OCI specifications.
Extended Descriptor field additions proposed in other OCI specifications
SHOULD first be considered for addition into this specification.

Digests

The digest property of a Descriptor acts as a content identifier, enabling content
addressability.
It uniquely identifies content by taking a collision-resistant hash of the bytes.
If the digest can be communicated in a secure manner, one can verify content
from an insecure source by recalculating the digest independently, ensuring the
content has not been modified.

The value of the digest property is a string consisting of an algorithm portion
and an encoded portion.
The algorithm specifies the cryptographic hash function and encoding used for
the digest; the encoded portion contains the encoded result of the hash function.

A digest string MUST match the following grammar:

digest ::= algorithm ":" encoded
algorithm ::= algorithm-component (algorithm-separator algorithm-component)*

7

https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc7230#section-2.7
annotations.md#rules
manifest.md
image-index.md#image-index-property-descriptions
image-index.md#image-index-property-descriptions
http://en.wikipedia.org/wiki/Content-addressable_storage
http://en.wikipedia.org/wiki/Content-addressable_storage
https://en.wikipedia.org/wiki/Cryptographic_hash_function
considerations.md#ebnf

algorithm-component ::= [a-z0-9]+
algorithm-separator ::= [+._-]
encoded ::= [a-zA-Z0-9=_-]+

Note that algorithm MAY impose algorithm-specific restriction on the grammar
of the encoded portion.
See also Registered Algorithms.

Some example digest strings include the following:

digest algorithm
Registered

sha256:6c3c624b58dbbcd3c0dd82b4c53f04194d1247c6eebdaab7c610cf7d66709b3bSHA-256 Yes

sha512:401b09eab3c013d4ca54922bb802bec8fd5318192b0a75f201d8b372742...SHA-512 Yes

multihash+base58:QmRZxt2b1FVZPNqd8hsiykDL3TdBDeTSPX9Kv46HmX4Gx8Multihash No

sha256+b64u:LCa0a2j_xo_5m0U8HTBBNBNCLXBkg7-g-YpeiGJm564SHA-256 with
urlsafe base64

No

Please see Registered Algorithms for a list of registered algorithms.

Implementations SHOULD allow digests with unrecognized algorithms to pass
validation if they comply with the above grammar.
While sha256 will only use hex encoded digests, separators in algorithm and
alphanumerics in encoded are included to allow for extensions.
As an example, we can parameterize the encoding and algorithm as
multihash+base58:QmRZxt2b1FVZPNqd8hsiykDL3TdBDeTSPX9Kv46HmX4Gx8,
which would be considered valid but unregistered by this specification.

Verification

Before consuming content targeted by a descriptor from untrusted sources, the
byte content SHOULD be verified against the digest string.
Before calculating the digest, the size of the content SHOULD be verified to
reduce hash collision space.
Heavy processing before calculating a hash SHOULD be avoided.
Implementations MAY employ canonicalization of the underlying content to
ensure stable content identifiers.

8

canonicalization.md#canonicalization

Digest calculations

A digest is calculated by the following pseudo-code, where H is the selected hash
algorithm, identified by string <alg>:

let ID(C) = Descriptor.digest
let C = <bytes>
let D = '<alg>:' + Encode(H(C))
let verified = ID(C) == D

Above, we define the content identifier as ID(C), extracted from the
Descriptor.digest field.
Content C is a string of bytes.
Function H returns the hash of C in bytes and is passed to function Encode and
prefixed with the algorithm to obtain the digest.
The result verified is true if ID(C) is equal to D, confirming that C is the
content identified by D.
After verification, the following is true:

D == ID(C) == '<alg>:' + Encode(H(C))

The digest is confirmed as the content identifier by independently calculating
the digest.

Registered algorithms

While the algorithm component of the digest string allows the use of a variety of
cryptographic algorithms, compliant implementations SHOULD use SHA-256.

The following algorithm identifiers are currently defined by this specification:

algorithm identifier algorithm
sha256 SHA-256
sha512 SHA-512

If a useful algorithm is not included in the above table, it SHOULD be submitted
to this specification for registration.

SHA-256

SHA-256 is a collision-resistant hash function, chosen for ubiquity, reasonable
size and secure characteristics.

9

https://tools.ietf.org/html/rfc4634#section-4.1

Implementations MUST implement SHA-256 digest verification for use in de-
scriptors.

When the algorithm identifier is sha256, the encoded portion MUST match
/[a-f0-9]{64}/.
Note that [A-F] MUST NOT be used here.

SHA-512

SHA-512 is a collision-resistant hash function which may be more perfomant
than SHA-256 on some CPUs.
Implementations MAY implement SHA-512 digest verification for use in descrip-
tors.

When the algorithm identifier is sha512, the encoded portion MUST match
/[a-f0-9]{128}/.
Note that [A-F] MUST NOT be used here.

Examples

The following example describes a Manifest with a content identifier of
“sha256:5b0bcabd1ed22e9fb1310cf6c2dec7cdef19f0ad69efa1f392e94a4333501270”
and a size of 7682 bytes:

{
"mediaType": "application/vnd.oci.image.manifest.v1+json",
"size": 7682,
"digest": "sha256:5b0bcabd1ed22e9fb1310cf6c2dec7cdef19f0ad69efa1f392e94a4333501270"

}

In the following example, the descriptor indicates that the referenced manifest
is retrievable from a particular URL:

{
"mediaType": "application/vnd.oci.image.manifest.v1+json",
"size": 7682,
"digest": "sha256:5b0bcabd1ed22e9fb1310cf6c2dec7cdef19f0ad69efa1f392e94a4333501270",
"urls": [
"https://example.com/example-manifest"

]
}

10

https://tools.ietf.org/html/rfc4634#section-4.2
https://groups.google.com/a/opencontainers.org/forum/#!topic/dev/hsMw7cAwrZE
manifest.md#image-manifest

OCI Image Layout Specification

• The OCI Image Layout is a slash separated layout of OCI content-
addressable blobs and location-addressable references (refs).

• This layout MAY be used in a variety of different transport mechanisms:
archive formats (e.g. tar, zip), shared filesystem environments (e.g. nfs),
or networked file fetching (e.g. http, ftp, rsync).

Given an image layout and a ref, a tool can create an OCI Runtime Specification
bundle by:

• Following the ref to find a manifest, possibly via an image index
• Applying the filesystem layers in the specified order
• Converting the image configuration into an OCI Runtime Specification

config.json

Content

The image layout is as follows:

• blobs directory

– Contains content-addressable blobs
– A blob has no schema and SHOULD be considered opaque
– Directory MUST exist and MAY be empty
– See blobs section

• oci-layout file

– It MUST exist
– It MUST be a JSON object
– It MUST contain an imageLayoutVersion field
– See oci-layout file section
– It MAY include additional fields

• index.json file

– It MUST exist
– It MUST be an image index JSON object.
– See index.json section

Example Layout

This is an example image layout:

11

https://en.wikipedia.org/wiki/Content-addressable_storage#Content-addressed_vs._location-addressed
https://github.com/opencontainers/runtime-spec/blob/v1.0.0/bundle.md
https://github.com/opencontainers/runtime-spec/blob/v1.0.0/bundle.md
manifest.md#image-manifest
image-index.md
layer.md#applying
config.md
https://github.com/opencontainers/runtime-spec/blob/v1.0.0/config.md
https://github.com/opencontainers/runtime-spec/blob/v1.0.0/config.md
image-index.md

$ cd example.com/app/
$ find . -type f
./index.json
./oci-layout
./blobs/sha256/3588d02542238316759cbf24502f4344ffcc8a60c803870022f335d1390c13b4
./blobs/sha256/4b0bc1c4050b03c95ef2a8e36e25feac42fd31283e8c30b3ee5df6b043155d3c
./blobs/sha256/7968321274dc6b6171697c33df7815310468e694ac5be0ec03ff053bb135e768

Blobs are named by their contents:

$ shasum -a 256 ./blobs/sha256/afff3924849e458c5ef237db5f89539274d5e609db5db935ed3959c90f1f2d51
afff3924849e458c5ef237db5f89539274d5e609db5db935ed3959c90f1f2d51 ./blobs/sha256/afff3924849e458c5ef237db5f89539274d5e609db5db935ed3959c90f1f2d51

Blobs

• Object names in the blobs subdirectories are composed of a directory for
each hash algorithm, the children of which will contain the actual content.

• The content of blobs/<alg>/<encoded> MUST match the digest
<alg>:<encoded> (referenced per descriptor). For example, the content of
blobs/sha256/da39a3ee5e6b4b0d3255bfef95601890afd80709 MUST
match the digest sha256:da39a3ee5e6b4b0d3255bfef95601890afd80709.

• The character set of the entry name for <alg> and <encoded> MUST
match the respective grammar elements described in descriptor.

• The blobs directory MAY contain blobs which are not referenced by any
of the refs.

• The blobs directory MAY be missing referenced blobs, in which case the
missing blobs SHOULD be fulfilled by an external blob store.

Example Blobs

$ cat ./blobs/sha256/9b97579de92b1c195b85bb42a11011378ee549b02d7fe9c17bf2a6b35d5cb079 | jq
{
"schemaVersion": 2,
"manifests": [
{
"mediaType": "application/vnd.oci.image.manifest.v1+json",
"size": 7143,

"digest": "sha256:afff3924849e458c5ef237db5f89539274d5e609db5db935ed3959c90f1f2d51",
"platform": {
"architecture": "ppc64le",
"os": "linux"

}
},

...

12

descriptor.md#digests-and-verification
descriptor.md#digests-and-verification

$ cat ./blobs/sha256/afff3924849e458c5ef237db5f89539274d5e609db5db935ed3959c90f1f2d51 | jq
{
"schemaVersion": 2,
"config": {
"mediaType": "application/vnd.oci.image.config.v1+json",
"size": 7023,

"digest": "sha256:5b0bcabd1ed22e9fb1310cf6c2dec7cdef19f0ad69efa1f392e94a4333501270"
},
"layers": [
{
"mediaType": "application/vnd.oci.image.layer.v1.tar+gzip",
"size": 32654,

"digest": "sha256:e692418e4cbaf90ca69d05a66403747baa33ee08806650b51fab815ad7fc331f"
},

...

$ cat ./blobs/sha256/5b0bcabd1ed22e9fb1310cf6c2dec7cdef19f0ad69efa1f392e94a4333501270 | jq
{
"architecture": "amd64",
"author": "Alyssa P. Hacker <alyspdev@example.com>",
"config": {
"Hostname": "8dfe43d80430",
"Domainname": "",
"User": "",
"AttachStdin": false,
"AttachStdout": false,
"AttachStderr": false,
"Tty": false,
"OpenStdin": false,
"StdinOnce": false,
"Env": [
"PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"
],
"Cmd": null,

"Image": "sha256:6986ae504bbf843512d680cc959484452034965db15f75ee8bdd1b107f61500b",
...

$ cat ./blobs/sha256/e692418e4cbaf90ca69d05a66403747baa33ee08806650b51fab815ad7fc331f
[tar stream]

oci-layout file

This JSON object serves as a marker for the base of an Open Container Image
Layout and to provide the version of the image-layout in use.

13

The imageLayoutVersion value will align with the OCI Image Specification
version at the time changes to the layout are made, and will pin a given version
until changes to the image layout are required.
This section defines the application/vnd.oci.layout.header.v1+json me-
dia type.

oci-layout Example

{
"imageLayoutVersion": "1.0.0"

}

index.json file

This REQUIRED file is the entry point for references and descriptors of the
image-layout.
The image index is a multi-descriptor entry point.

This index provides an established path (/index.json) to have an entry point
for an image-layout and to discover auxiliary descriptors.

• No semantic restriction is given for the “org.opencontainers.image.ref.name”
annotation of descriptors.

• In general the mediaType of each descriptor object in the manifests
field will be either application/vnd.oci.image.index.v1+json or
application/vnd.oci.image.manifest.v1+json.

• Future versions of the spec MAY use a different mediatype (i.e. a new
versioned format).

• An encountered mediaType that is unknown SHOULD be safely ignored.

Implementor’s Note:
A common use case of descriptors with a “org.opencontainers.image.ref.name”
annotation is representing a “tag” for a container image.
For example, an image may have a tag for different versions or builds of the
software.
In the wild you often see “tags” like “v1.0.0-vendor.0”, “2.0.0-debug”, etc.
Those tags will often be represented in an image-layout repository with matching
“org.opencontainers.image.ref.name” annotations like “v1.0.0-vendor.0”, “2.0.0-
debug”, etc.

Index Example

{

14

media-types.md
media-types.md
image-index.md
./descriptor.md

"schemaVersion": 2,
"manifests": [
{
"mediaType": "application/vnd.oci.image.index.v1+json",
"size": 7143,

"digest": "sha256:0228f90e926ba6b96e4f39cf294b2586d38fbb5a1e385c05cd1ee40ea54fe7fd",
"annotations": {
"org.opencontainers.image.ref.name": "stable-release"

}
},
{
"mediaType": "application/vnd.oci.image.manifest.v1+json",
"size": 7143,

"digest": "sha256:e692418e4cbaf90ca69d05a66403747baa33ee08806650b51fab815ad7fc331f",
"platform": {
"architecture": "ppc64le",
"os": "linux"

},
"annotations": {
"org.opencontainers.image.ref.name": "v1.0"

}
},
{
"mediaType": "application/xml",
"size": 7143,

"digest": "sha256:b3d63d132d21c3ff4c35a061adf23cf43da8ae054247e32faa95494d904a007e",
"annotations": {
"org.freedesktop.specifications.metainfo.version": "1.0",

"org.freedesktop.specifications.metainfo.type": "AppStream"
}

}
],
"annotations": {
"com.example.index.revision": "r124356"

}
}

This illustrates an index that provides two named manifest references and an
auxiliary mediatype for this image layout.

OCI Image Manifest Specification

There are three main goals of the Image Manifest Specification.
The first goal is content-addressable images, by supporting an image model

15

where the image’s configuration can be hashed to generate a unique ID for the
image and its components.
The second goal is to allow multi-architecture images, through a “fat manifest”
which references image manifests for platform-specific versions of an image.
In OCI, this is codified in an image index.
The third goal is to be translatable to the OCI Runtime Specification.

This section defines the application/vnd.oci.image.manifest.v1+json me-
dia type.
For the media type(s) that this is compatible with see the matrix.

Image Manifest

Unlike the image index, which contains information about a set of images that
can span a variety of architectures and operating systems, an image manifest
provides a configuration and set of layers for a single container image for a
specific architecture and operating system.

Image Manifest Property Descriptions

• schemaVersion int

This REQUIRED property specifies the image manifest schema version.
For this version of the specification, this MUST be 2 to ensure backward com-
patibility with older versions of Docker. The value of this field will not change.
This field MAY be removed in a future version of the specification.

• mediaType string

This property is reserved for use, to maintain compatibility.
When used, this field contains the media type of this document, which differs
from the descriptor use of mediaType.

• config descriptor
This REQUIRED property references a configuration object for a con-
tainer, by digest.
Beyond the descriptor requirements, the value has the following additional
restrictions:

– mediaType string
This descriptor property has additional restrictions for config.
Implementations MUST support at least the following media types:

16

image-index.md
conversion.md
https://github.com/opencontainers/runtime-spec
media-types.md
media-types.md
media-types.md#compatibility-matrix
image-index.md
media-types.md#compatibility-matrix
descriptor.md#properties
descriptor.md
descriptor.md#properties
descriptor.md#properties

* application/vnd.oci.image.config.v1+json

Manifests concerned with portability SHOULD use one of the above
media types.

• layers array of objects
Each item in the array MUST be a descriptor.
The array MUST have the base layer at index 0.
Subsequent layers MUST then follow in stack order (i.e. from layers[0]
to layers[len(layers)-1]).
The final filesystem layout MUST match the result of applying the layers
to an empty directory.
The ownership, mode, and other attributes of the initial empty directory
are unspecified.
Beyond the descriptor requirements, the value has the following additional
restrictions:

– mediaType string
This descriptor property has additional restrictions for layers[].
Implementations MUST support at least the following media types:
* application/vnd.oci.image.layer.v1.tar
* application/vnd.oci.image.layer.v1.tar+gzip
* application/vnd.oci.image.layer.nondistributable.v1.tar
* application/vnd.oci.image.layer.nondistributable.v1.tar+gzip

Manifests concerned with portability SHOULD use one of the above
media types.
Entries in this field will frequently use the +gzip types.

• annotations string-string map
This OPTIONAL property contains arbitrary metadata for the image
manifest.
This OPTIONAL property MUST use the annotation rules.
See Pre-Defined Annotation Keys.

Example Image Manifest

Example showing an image manifest:

{
"schemaVersion": 2,
"config": {
"mediaType": "application/vnd.oci.image.config.v1+json",
"size": 7023,

17

config.md
descriptor.md
layer.md#applying-changesets
layer.md#file-attributes
descriptor.md#properties
descriptor.md#properties
layer.md
layer.md#gzip-media-types
layer.md#non-distributable-layers
layer.md#gzip-media-types
annotations.md#rules
annotations.md#pre-defined-annotation-keys

"digest": "sha256:b5b2b2c507a0944348e0303114d8d93aaaa081732b86451d9bce1f432a537bc7"
},
"layers": [
{
"mediaType": "application/vnd.oci.image.layer.v1.tar+gzip",
"size": 32654,

"digest": "sha256:e692418e4cbaf90ca69d05a66403747baa33ee08806650b51fab815ad7fc331f"
},
{
"mediaType": "application/vnd.oci.image.layer.v1.tar+gzip",
"size": 16724,

"digest": "sha256:3c3a4604a545cdc127456d94e421cd355bca5b528f4a9c1905b15da2eb4a4c6b"
},
{
"mediaType": "application/vnd.oci.image.layer.v1.tar+gzip",
"size": 73109,

"digest": "sha256:ec4b8955958665577945c89419d1af06b5f7636b4ac3da7f12184802ad867736"
}

],
"annotations": {
"com.example.key1": "value1",
"com.example.key2": "value2"

}
}

OCI Image Index Specification

The image index is a higher-level manifest which points to specific image man-
ifests, ideal for one or more platforms.
While the use of an image index is OPTIONAL for image providers, image
consumers SHOULD be prepared to process them.

This section defines the application/vnd.oci.image.index.v1+json media
type.
For the media type(s) that this document is compatible with, see the matrix.

Image Index Property Descriptions

• schemaVersion int

This REQUIRED property specifies the image manifest schema version.
For this version of the specification, this MUST be 2 to ensure backward com-
patibility with older versions of Docker.

18

manifest.md
manifest.md
media-types.md
media-types.md
media-types.md#compatibility-matrix

The value of this field will not change.
This field MAY be removed in a future version of the specification.

• mediaType string

This property is reserved for use, to maintain compatibility.
When used, this field contains the media type of this document, which differs
from the descriptor use of mediaType.

• manifests array of objects

This REQUIRED property contains a list of manifests for specific platforms.
While this property MUST be present, the size of the array MAY be zero.

Each object in manifests includes a set of descriptor properties with the fol-
lowing additional properties and restrictions:

• mediaType string
This descriptor property has additional restrictions for manifests.
Implementations MUST support at least the following media types:

– application/vnd.oci.image.manifest.v1+json

Image indexes concerned with portability SHOULD use one of the above
media types.
Future versions of the spec MAY use a different mediatype (i.e. a new
versioned format).
An encountered mediaType that is unknown SHOULD be safely ignored.

• platform object
This OPTIONAL property describes the minimum runtime requirements
of the image.
This property SHOULD be present if its target is platform-specific.

– architecture string
This REQUIRED property specifies the CPU architecture.
Image indexes SHOULD use, and implementations SHOULD under-
stand, values listed in the Go Language document for GOARCH.

– os string
This REQUIRED property specifies the operating system.
Image indexes SHOULD use, and implementations SHOULD under-
stand, values listed in the Go Language document for GOOS.

19

media-types.md#compatibility-matrix
descriptor.md#properties
manifest.md
descriptor.md#properties
descriptor.md#properties
manifest.md
https://golang.org/doc/install/source#environment
https://golang.org/doc/install/source#environment

– os.version string
This OPTIONAL property specifies the version of the operating sys-
tem targeted by the referenced blob.
Implementations MAY refuse to use manifests where os.version is
not known to work with the host OS version.
Valid values are implementation-defined. e.g. 10.0.14393.1066 on
windows.

– os.features array of strings
This OPTIONAL property specifies an array of strings, each speci-
fying a mandatory OS feature.
When os is windows, image indexes SHOULD use, and implementa-
tions SHOULD understand the following values:
* win32k: image requires win32k.sys on the host (Note:
win32k.sys is missing on Nano Server)
When os is not windows, values are implementation-defined and
SHOULD be submitted to this specification for standardization.

– variant string
This OPTIONAL property specifies the variant of the CPU.
Image indexes SHOULD use, and implementations SHOULD under-
stand, values listed in the following table.
When the variant of the CPU is not listed in the table, values are
implementation-defined and SHOULD be submitted to this specifi-
cation for standardization.

ISA/ABI architecture variant

ARM 32-bit, v6 arm v6
ARM 32-bit, v7 arm v7
ARM 32-bit, v8 arm v8
ARM 64-bit, v8 arm64 v8

– features array of strings
This property is RESERVED for future versions of the specification.

• annotations string-string map
This OPTIONAL property contains arbitrary metadata for the image in-
dex.
This OPTIONAL property MUST use the annotation rules.
See Pre-Defined Annotation Keys.

20

annotations.md#rules
annotations.md#pre-defined-annotation-keys

Example Image Index

Example showing a simple image index pointing to image manifests for two
platforms:

{
"schemaVersion": 2,
"manifests": [
{
"mediaType": "application/vnd.oci.image.manifest.v1+json",
"size": 7143,

"digest": "sha256:e692418e4cbaf90ca69d05a66403747baa33ee08806650b51fab815ad7fc331f",
"platform": {
"architecture": "ppc64le",
"os": "linux"

}
},
{
"mediaType": "application/vnd.oci.image.manifest.v1+json",
"size": 7682,

"digest": "sha256:5b0bcabd1ed22e9fb1310cf6c2dec7cdef19f0ad69efa1f392e94a4333501270",
"platform": {
"architecture": "amd64",
"os": "linux"

}
}

],
"annotations": {
"com.example.key1": "value1",
"com.example.key2": "value2"

}
}

Image Layer Filesystem Changeset

This document describes how to serialize a filesystem and filesystem changes
like removed files into a blob called a layer.
One or more layers are applied on top of each other to create a complete filesys-
tem.
This document will use a concrete example to illustrate how to create and con-
sume these filesystem layers.

This section defines the application/vnd.oci.image.layer.v1.tar,
application/vnd.oci.image.layer.v1.tar+gzip, application/vnd.oci.image.layer.nondistributable.v1.tar,

21

and application/vnd.oci.image.layer.nondistributable.v1.tar+gzip
media types.

+gzip Media Types

• The media type application/vnd.oci.image.layer.v1.tar+gzip rep-
resents an application/vnd.oci.image.layer.v1.tar payload which
has been compressed with gzip.

• The media type application/vnd.oci.image.layer.nondistributable.v1.tar+gzip
represents an application/vnd.oci.image.layer.nondistributable.v1.tar
payload which has been compressed with gzip.

Distributable Format

• Layer Changesets for the media type application/vnd.oci.image.layer.v1.tar
MUST be packaged in tar archive.

• Layer Changesets for the media type application/vnd.oci.image.layer.v1.tar
MUST NOT include duplicate entries for file paths in the resulting tar
archive.

Change Types

Types of changes that can occur in a changeset are:

• Additions
• Modifications
• Removals

Additions and Modifications are represented the same in the changeset tar
archive.

Removals are represented using “whiteout” file entries (See Representing
Changes).

File Types

Throughout this document section, the use of word “files” or “entries” includes
the following, where supported:

• regular files
• directories
• sockets

22

media-types.md
https://tools.ietf.org/html/rfc1952
https://tools.ietf.org/html/rfc1952
media-types.md
https://en.wikipedia.org/wiki/Tar_(computing)
media-types.md
https://en.wikipedia.org/wiki/Tar_(computing)
https://en.wikipedia.org/wiki/Tar_(computing)

• symbolic links
• block devices
• character devices
• FIFOs

File Attributes

Where supported, MUST include file attributes for Additions and Modifications
include:

• Modification Time (mtime)
• User ID (uid)

– User Name (uname) secondary to uid

• Group ID (gid)

– Group Name (gname) secondary to gid

• Mode (mode)
• Extended Attributes (xattrs)
• Symlink reference (linkname + symbolic link type)
• Hardlink reference (linkname)

Sparse files SHOULD NOT be used because they lack consistent support across
tar implementations.

Hardlinks

• Hardlinks are a POSIX concept for having one or more directory entries
for the same file on the same device.

• Not all filesystems support hardlinks (e.g. FAT).
• Hardlinks are possible with all file types except directories.
• Non-directory files are considered “hardlinked” when their link count is

greater than 1.
• Hardlinked files are on a same device (i.e. comparing Major:Minor pair)

and have the same inode.
• The corresponding files that share the link with the > 1 linkcount may be

outside the directory that the changeset is being produced from, in which
case the linkname is not recorded in the changeset.

• Hardlinks are stored in a tar archive with type of a 1 char, per the GNU
Basic Tar Format and libarchive tar(5).

• While approaches to deriving new or changed hardlinks may vary, a pos-
sible approach is:

23

https://en.wikipedia.org/wiki/Sparse_file
http://pubs.opengroup.org/onlinepubs/9699919799/functions/link.html
https://en.wikipedia.org/wiki/File_Allocation_Table
http://www.gnu.org/software/tar/manual/html_node/Standard.html
http://www.gnu.org/software/tar/manual/html_node/Standard.html
https://github.com/libarchive/libarchive/wiki/ManPageTar5#POSIX_ustar_Archives

SET LinkMap to map[< Major:Minor String >]map[< inode integer >]< path string >
SET LinkNames to map[< src path string >]< dest path string >
FOR each path in root path
IF path type is directory
CONTINUE

ENDIF
SET filestat to stat(path)
IF filestat num of links == 1
CONTINUE

ENDIF
IF LinkMap[filestat device][filestat inode] is not empty
SET LinkNames[path] to LinkMap[filestat device][filestat inode]

ELSE
SET LinkMap[filestat device][filestat inode] to path

ENDIF
END FOR

With this approach, the link map and links names of a directory could be
compared against that of another directory to derive additions and changes to
hardlinks.

Platform-specific attributes

Implementations on Windows MUST support these additional attributes, en-
coded in PAX vendor
extensions as follows:

• Windows file attributes (MSWINDOWS.fileattr)
• Security descriptor (MSWINDOWS.rawsd): base64-encoded self-relative bi-

nary security descriptor
• Mount points (MSWINDOWS.mountpoint): if present on a directory sym-

bolic link, then the link should be created as a directory junction
• Creation time (LIBARCHIVE.creationtime)

Creating

Initial Root Filesystem

The initial root filesystem is the base or parent layer.

For this example, an image root filesystem has an initial state as an empty
directory.
The name of the directory is not relevant to the layer itself, only for the purpose
of producing comparisons.

24

https://github.com/libarchive/libarchive/wiki/ManPageTar5#pax-interchange-format
https://github.com/libarchive/libarchive/wiki/ManPageTar5#pax-interchange-format
https://msdn.microsoft.com/en-us/library/windows/desktop/gg258117(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/cc230366.aspx
https://en.wikipedia.org/wiki/NTFS_junction_point

Here is an initial empty directory structure for a changeset, with a unique di-
rectory name rootfs-c9d-v1.

rootfs-c9d-v1/

Populate Initial Filesystem

Files and directories are then created:

rootfs-c9d-v1/
etc/

my-app-config
bin/

my-app-binary
my-app-tools

The rootfs-c9d-v1 directory is then created as a plain tar archive with relative
path to rootfs-c9d-v1.
Entries for the following files:

./

./etc/

./etc/my-app-config

./bin/

./bin/my-app-binary

./bin/my-app-tools

Populate a Comparison Filesystem

Create a new directory and initialize it with a copy or snapshot of the prior root
filesystem.
Example commands that can preserve file attributes to make this copy are:

• cp(1): cp -a rootfs-c9d-v1/ rootfs-c9d-v1.s1/
• rsync(1): rsync -aHAX rootfs-c9d-v1/ rootfs-c9d-v1.s1/
• tar(1): mkdir rootfs-c9d-v1.s1 && tar --acls --xattrs -C

rootfs-c9d-v1/ -c . | tar -C rootfs-c9d-v1.s1/ --acls --xattrs
-x (including --selinux where supported)

Any changes to the snapshot MUST NOT change or affect the directory it was
copied from.

For example rootfs-c9d-v1.s1 is an identical snapshot of rootfs-c9d-v1.
In this way rootfs-c9d-v1.s1 is prepared for updates and alterations.

25

https://en.wikipedia.org/wiki/Tar_(computing)
http://linux.die.net/man/1/cp
http://linux.die.net/man/1/rsync
http://linux.die.net/man/1/tar

Implementor’s Note: a copy-on-write or union filesystem can efficiently make
directory snapshots
Initial layout of the snapshot:

rootfs-c9d-v1.s1/
etc/

my-app-config
bin/

my-app-binary
my-app-tools

See Change Types for more details on changes.
For example, add a directory at /etc/my-app.d containing a default config file,
removing the existing config file.
Also a change (in attribute or file content) to ./bin/my-app-tools binary to
handle the config layout change.
Following these changes, the representation of the rootfs-c9d-v1.s1 directory:

rootfs-c9d-v1.s1/
etc/

my-app.d/
default.cfg

bin/
my-app-binary
my-app-tools

Determining Changes

When two directories are compared, the relative root is the top-level directory.
The directories are compared, looking for files that have been added, modified,
or removed.
For this example, rootfs-c9d-v1/ and rootfs-c9d-v1.s1/ are recursively
compared, each as relative root path.
The following changeset is found:

Added: /etc/my-app.d/
Added: /etc/my-app.d/default.cfg
Modified: /bin/my-app-tools
Deleted: /etc/my-app-config

This reflects the removal of /etc/my-app-config and creation of a file and
directory at /etc/my-app.d/default.cfg.
/bin/my-app-tools has also been replaced with an updated version.

26

Representing Changes

A tar archive is then created which contains only this changeset:

• Added and modified files and directories in their entirety
• Deleted files or directories marked with a whiteout file

The resulting tar archive for rootfs-c9d-v1.s1 has the following entries:

./etc/my-app.d/

./etc/my-app.d/default.cfg

./bin/my-app-tools

./etc/.wh.my-app-config

To signify that the resource ./etc/my-app-config MUST be removed when
the changeset is applied, the basename of the entry is prefixed with .wh..

Applying Changesets

• Layer Changesets of media type application/vnd.oci.image.layer.v1.tar
are applied, rather than simply extracted as tar archives.

• Applying a layer changeset requires special consideration for the whiteout
files.

• In the absence of any whiteout files in a layer changeset, the archive is
extracted like a regular tar archive.

Changeset over existing files

This section specifies applying an entry from a layer changeset if the target path
already exists.

If the entry and the existing path are both directories, then the existing path’s
attributes MUST be replaced by those of the entry in the changeset.
In all other cases, the implementation MUST do the semantic equivalent of the
following:

• removing the file path (e.g. unlink(2) on Linux systems)
• recreating the file path, based on the contents and attributes of the change-

set entry

27

https://en.wikipedia.org/wiki/Tar_(computing)
media-types.md
http://linux.die.net/man/2/unlink

Whiteouts

• A whiteout file is an empty file with a special filename that signifies a path
should be deleted.

• A whiteout filename consists of the prefix .wh. plus the basename of the
path to be deleted.

• As files prefixed with .wh. are special whiteout markers, it is not possible
to create a filesystem which has a file or directory with a name beginning
with .wh..

• Once a whiteout is applied, the whiteout itself MUST also be hidden.
• Whiteout files MUST only apply to resources in lower/parent layers.
• Files that are present in the same layer as a whiteout file can only be

hidden by whiteout files in subsequent layers.

The following is a base layer with several resources:

a/
a/b/
a/b/c/
a/b/c/bar

When the next layer is created, the original a/b directory is deleted and recre-
ated with a/b/c/foo:

a/
a/.wh..wh..opq
a/b/
a/b/c/
a/b/c/foo

When processing the second layer, a/.wh..wh..opq is applied first, before cre-
ating the new version of a/b, regardless of the ordering in which the whiteout
file was encountered.
For example, the following layer is equivalent to the layer above:

a/
a/b/
a/b/c/
a/b/c/foo
a/.wh..wh..opq

Implementations SHOULD generate layers such that the whiteout files appear
before sibling directory entries.

28

Opaque Whiteout

• In addition to expressing that a single entry should be removed from a
lower layer, layers may remove all of the children using an opaque whiteout
entry.

• An opaque whiteout entry is a file with the name .wh..wh..opq indicating
that all siblings are hidden in the lower layer.

Let’s take the following base layer as an example:

etc/
my-app-config

bin/
my-app-binary
my-app-tools
tools/

my-app-tool-one

If all children of bin/ are removed, the next layer would have the following:

bin/
.wh..wh..opq

This is called opaque whiteout format.
An opaque whiteout file hides all children of the bin/ including sub-directories
and all descendants.
Using explicit whiteout files, this would be equivalent to the following:

bin/
.wh.my-app-binary
.wh.my-app-tools
.wh.tools

In this case, a unique whiteout file is generated for each entry.
If there were more children of bin/ in the base layer, there would be an entry
for each.
Note that this opaque file will apply to all children, including sub-directories,
other resources and all descendants.

Implementations SHOULD generate layers using explicit whiteout files, but
MUST accept both.

Any given image is likely to be composed of several of these Image Filesystem
Changeset tar archives.

29

Non-Distributable Layers

Due to legal requirements, certain layers may not be regularly distributable.
Such “non-distributable” layers are typically downloaded directly from a dis-
tributor but never uploaded.

Non-distributable layers SHOULD be tagged with an alternative mediatype of
application/vnd.oci.image.layer.nondistributable.v1.tar.
Implementations SHOULD NOT upload layers tagged with this media type;
however, such a media type SHOULD NOT affect whether an implementation
downloads the layer.

Descriptors referencing non-distributable layers MAY include urls for down-
loading these layers directly; however, the presence of the urls field SHOULD
NOT be used to determine whether or not a layer is non-distributable.

OCI Image Configuration

An OCI Image is an ordered collection of root filesystem changes and the cor-
responding execution parameters for use within a container runtime.
This specification outlines the JSON format describing images for use with a
container runtime and execution tool and its relationship to filesystem change-
sets, described in Layers.

This section defines the application/vnd.oci.image.config.v1+json media
type.

Terminology

This specification uses the following terms:

Layer

• Image filesystems are composed of layers.
• Each layer represents a set of filesystem changes in a tar-based layer for-

mat, recording files to be added, changed, or deleted relative to its parent
layer.

• Layers do not have configuration metadata such as environment variables
or default arguments - these are properties of the image as a whole rather
than any particular layer.

• Using a layer-based or union filesystem such as AUFS, or by computing
the diff from filesystem snapshots, the filesystem changeset can be used to
present a series of image layers as if they were one cohesive filesystem.

30

descriptor.md
layer.md
media-types.md
media-types.md
layer.md
layer.md
layer.md

Image JSON

• Each image has an associated JSON structure which describes some ba-
sic information about the image such as date created, author, as well as
execution/runtime configuration like its entrypoint, default arguments,
networking, and volumes.

• The JSON structure also references a cryptographic hash of each layer
used by the image, and provides history information for those layers.

• This JSON is considered to be immutable, because changing it would
change the computed ImageID.

• Changing it means creating a new derived image, instead of changing the
existing image.

Layer DiffID

A layer DiffID is the digest over the layer’s uncompressed tar archive and serial-
ized in the descriptor digest format, e.g., sha256:a9561eb1b190625c9adb5a9513e72c4dedafc1cb2d4c5236c9a6957ec7dfd5a9.
Layers SHOULD be packed and unpacked reproducibly to avoid changing the
layer DiffID, for example by using tar-split to save the tar headers.

NOTE: Do not confuse DiffIDs with layer digests, often referenced in the man-
ifest, which are digests over compressed or uncompressed content.

Layer ChainID

For convenience, it is sometimes useful to refer to a stack of layers with a single
identifier.
While a layer’s DiffID identifies a single changeset, the ChainID identifies the
subsequent application of those changesets.
This ensures that we have handles referring to both the layer itself, as well as
the result of the application of a series of changesets.
Use in combination with rootfs.diff_ids while applying layers to a root
filesystem to uniquely and safely identify the result.

Definition

The ChainID of an applied set of layers is defined with the following recursion:

ChainID(L�) = DiffID(L�)
ChainID(L�|...|L���|L�) = Digest(ChainID(L�|...|L���) + " " + DiffID(L�))

For this, we define the binary | operation to be the result of applying the right
operand to the left operand.

31

https://github.com/vbatts/tar-split
manifest.md#image-manifest-property-descriptions

For example, given base layer A and a changeset B, we refer to the result of
applying B to A as A|B.
Above, we define the ChainID for a single layer (L�) as equivalent to the DiffID
for that layer.
Otherwise, the ChainID for a set of applied layers (L�|...|L���|L�) is defined as
the recursion Digest(ChainID(L�|...|L���) + " " + DiffID(L�)).

Explanation
Let’s say we have layers A, B, C, ordered from bottom to top, where A is the
base and C is the top.
Defining | as a binary application operator, the root filesystem may be A|B|C.
While it is implied that C is only useful when applied to A|B, the identifier C is
insufficient to identify this result, as we’d have the equality C = A|B|C, which
isn’t true.
The main issue is when we have two definitions of C, C = C and C = A|B|C.
If this is true (with some handwaving), C = x|C where x = any application.
This means that if an attacker can define x, relying on C provides no guarantee
that the layers were applied in any order.
The ChainID addresses this problem by being defined as a compound hash.
We differentiate the changeset C, from the order-dependent ap-
plication A|B|C by saying that the resulting rootfs is identified by
ChainID(A|B|C), which can be calculated by ImageConfig.rootfs.
Let’s expand the definition of ChainID(A|B|C) to explore its internal structure:

ChainID(A) = DiffID(A)
ChainID(A|B) = Digest(ChainID(A) + " " + DiffID(B))
ChainID(A|B|C) = Digest(ChainID(A|B) + " " + DiffID(C))

We can replace each definition and reduce to a single equality:

ChainID(A|B|C) = Digest(Digest(DiffID(A) + " " + DiffID(B)) + " " + DiffID(C))

Hopefully, the above is illustrative of the actual contents of the ChainID.
Most importantly, we can easily see that ChainID(C) != ChainID(A|B|C),
otherwise, ChainID(C) = DiffID(C), which is the base case, could not be true.

ImageID

Each image’s ID is given by the SHA256 hash of its configuration JSON.
It is represented as a hexadecimal encoding of 256 bits, e.g., sha256:a9561eb1b190625c9adb5a9513e72c4dedafc1cb2d4c5236c9a6957ec7dfd5a9.
Since the configuration JSON that gets hashed references hashes of each layer in
the image, this formulation of the ImageID makes images content-addressable.

32

Properties

Note: Any OPTIONAL field MAY also be set to null, which is equivalent to
being absent.

• created string, OPTIONAL

An combined date and time at which the image was created, formatted as
defined by RFC 3339, section 5.6.

• author string, OPTIONAL

Gives the name and/or email address of the person or entity which created and
is responsible for maintaining the image.

• architecture string, REQUIRED

The CPU architecture which the binaries in this image are built to run on.
Configurations SHOULD use, and implementations SHOULD understand, val-
ues listed in the Go Language document for GOARCH.

• os string, REQUIRED

The name of the operating system which the image is built to run on.
Configurations SHOULD use, and implementations SHOULD understand, val-
ues listed in the Go Language document for GOOS.

• config object, OPTIONAL

The execution parameters which SHOULD be used as a base when running a
container using the image.
This field can be null, in which case any execution parameters should be spec-
ified at creation of the container.

• User string, OPTIONAL
The username or UID which is a platform-specific structure that allows
specific control over which user the process run as.
This acts as a default value to use when the value is not specified when
creating a container.
For Linux based systems, all of the following are valid: user, uid,
user:group, uid:gid, uid:group, user:gid.
If group/gid is not specified, the default group and supplementary
groups of the given user/uid in /etc/passwd from the container are
applied.

33

https://tools.ietf.org/html/rfc3339#section-5.6
https://golang.org/doc/install/source#environment
https://golang.org/doc/install/source#environment

• ExposedPorts object, OPTIONAL
A set of ports to expose from a container running this image.
Its keys can be in the format of:
port/tcp, port/udp, port with the default protocol being tcp if not spec-
ified.
These values act as defaults and are merged with any specified when cre-
ating a container.
NOTE: This JSON structure value is unusual because it is a direct JSON
serialization of the Go type map[string]struct{} and is represented in
JSON as an object mapping its keys to an empty object.

• Env array of strings, OPTIONAL
Entries are in the format of VARNAME=VARVALUE.
These values act as defaults and are merged with any specified when cre-
ating a container.

• Entrypoint array of strings, OPTIONAL
A list of arguments to use as the command to execute when the container
starts.
These values act as defaults and may be replaced by an entrypoint specified
when creating a container.

• Cmd array of strings, OPTIONAL
Default arguments to the entrypoint of the container.
These values act as defaults and may be replaced by any specified when
creating a container.
If an Entrypoint value is not specified, then the first entry of the Cmd
array SHOULD be interpreted as the executable to run.

• Volumes object, OPTIONAL
A set of directories describing where the process is likely write data specific
to a container instance.
NOTE: This JSON structure value is unusual because it is a direct JSON
serialization of the Go type map[string]struct{} and is represented in
JSON as an object mapping its keys to an empty object.

• WorkingDir string, OPTIONAL
Sets the current working directory of the entrypoint process in the con-
tainer.
This value acts as a default and may be replaced by a working directory
specified when creating a container.

• Labels object, OPTIONAL
The field contains arbitrary metadata for the container.
This property MUST use the annotation rules.

34

annotations.md#rules

• StopSignal string, OPTIONAL
The field contains the system call signal that will be sent to the container
to exit. The signal can be a signal name in the format SIGNAME, for
instance SIGKILL or SIGRTMIN+3.

• rootfs object, REQUIRED

The rootfs key references the layer content addresses used by the image.
This makes the image config hash depend on the filesystem hash.

- **type** *string*, REQUIRED

MUST be set to `layers`.
Implementations MUST generate an error if they encounter a unknown value while verifying or unpacking an image.

- **diff_ids** *array of strings*, REQUIRED

An array of layer content hashes (`DiffIDs`), in order from first to last.

• history array of objects, OPTIONAL

Describes the history of each layer.
The array is ordered from first to last.
The object has the following fields:

- **created** *string*, OPTIONAL

A combined date and time at which the layer was created, formatted as defined by [RFC 3339, section 5.6][rfc3339-s5.6].

- **author** *string*, OPTIONAL

The author of the build point.

- **created_by** *string*, OPTIONAL

The command which created the layer.

- **comment** *string*, OPTIONAL

A custom message set when creating the layer.

- **empty_layer** *boolean*, OPTIONAL

This field is used to mark if the history item created a filesystem diff.
It is set to true if this history item doesn't correspond to an actual layer in the rootfs section (for example, Dockerfile's [ENV](https://docs.docker.com/engine/reference/builder/#/env) command results in no change to the filesystem).

35

Any extra fields in the Image JSON struct are considered implementation spe-
cific and MUST be ignored by any implementations which are unable to inter-
pret them.

Whitespace is OPTIONAL and implementations MAY have compact JSON with
no whitespace.

Example

Here is an example image configuration JSON document:

{
"created": "2015-10-31T22:22:56.015925234Z",
"author": "Alyssa P. Hacker <alyspdev@example.com>",
"architecture": "amd64",
"os": "linux",
"config": {

"User": "alice",
"ExposedPorts": {

"8080/tcp": {}
},
"Env": [
"PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",

"FOO=oci_is_a",
"BAR=well_written_spec"

],
"Entrypoint": [

"/bin/my-app-binary"
],
"Cmd": [

"--foreground",
"--config",
"/etc/my-app.d/default.cfg"

],
"Volumes": {

"/var/job-result-data": {},
"/var/log/my-app-logs": {}

},
"WorkingDir": "/home/alice",
"Labels": {
"com.example.project.git.url": "https://example.com/project.git",
"com.example.project.git.commit": "45a939b2999782a3f005621a8d0f29aa387e1d6b"
}

},
"rootfs": {

36

"diff_ids": [
"sha256:c6f988f4874bb0add23a778f753c65efe992244e148a1d2ec2a8b664fb66bbd1",
"sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef"
],
"type": "layers"

},
"history": [
{
"created": "2015-10-31T22:22:54.690851953Z",

"created_by": "/bin/sh -c #(nop) ADD file:a3bc1e842b69636f9df5256c49c5374fb4eef1e281fe3f282c65fb853ee171c5 in /"
},
{
"created": "2015-10-31T22:22:55.613815829Z",
"created_by": "/bin/sh -c #(nop) CMD [\"sh\"]",
"empty_layer": true

}
]

}

Annotations

Several components of the specification, like Image Manifests and Descriptors,
feature an optional annotations property, whose format is common and defined
in this section.

This property contains arbitrary metadata.

Rules

• Annotations MUST be a key-value map where both the key and value
MUST be strings.

• While the value MUST be present, it MAY be an empty string.
• Keys MUST be unique within this map, and best practice is to namespace

the keys.
• Keys SHOULD be named using a reverse domain notation - e.g.

com.example.myKey.
• The prefix org.opencontainers is reserved for keys defined in Open Con-

tainer Initiative (OCI) specifications and MUST NOT be used by other
specifications and extensions.

• Keys using the org.opencontainers.image namespace are reserved for
use in the OCI Image Specification and MUST NOT be used by other
specifications and extensions, including other OCI specifications.

• If there are no annotations then this property MUST either be absent or
be an empty map.

37

manifest.md
descriptor.md

• Consumers MUST NOT generate an error if they encounter an unknown
annotation key.

Pre-Defined Annotation Keys

This specification defines the following annotation keys, intended for but not
limited to image index and image manifest authors:

• org.opencontainers.image.created date and time on which the image
was built (string, date-time as defined by RFC 3339).

• org.opencontainers.image.authors contact details of the people or or-
ganization responsible for the image (freeform string)

• org.opencontainers.image.url URL to find more information on the
image (string)

• org.opencontainers.image.documentation URL to get documenta-
tion on the image (string)

• org.opencontainers.image.source URL to get source code for building
the image (string)

• org.opencontainers.image.version version of the packaged software

• The version MAY match a label or tag in the source code repository

• version MAY be Semantic versioning-compatible

• org.opencontainers.image.revision Source control revision identifier
for the packaged software.

• org.opencontainers.image.vendor Name of the distributing entity, or-
ganization or individual.

• org.opencontainers.image.licenses License(s) under which contained
software is distributed as an SPDX License Expression.

• org.opencontainers.image.ref.name Name of the reference for a target
(string).

• SHOULD only be considered valid when on descriptors on index.json
within image layout.

• Character set of the value SHOULD conform to alphanum of A-Za-z0-9
and separator set of -._:@/+

• The reference must match the following grammar:

38

image-index.md
manifest.md
https://tools.ietf.org/html/rfc3339#section-5.6
http://semver.org/
https://spdx.org/spdx-specification-21-web-version#h.jxpfx0ykyb60
image-layout.md
considerations.md#ebnf

ref ::= component ("/" component)*
component ::= alphanum (separator alphanum)*
alphanum ::= [A-Za-z0-9]+
separator ::= [-._:@+] | "--"

• org.opencontainers.image.title Human-readable title of the image
(string)

• org.opencontainers.image.description Human-readable description
of the software packaged in the image (string)

Back-compatibility with Label Schema

Label Schema defined a number of conventional labels for container im-
ages, and these are now superceded by annotations with keys starting
org.opencontainers.image.

While users are encouraged to use the org.opencontainers.image keys, tools
MAY choose to support compatible annotations using the org.label-schema
prefix as follows.

org.opencontainers.image
prefix

org.label-schema
prefix Compatibility notes

created build-date Compatible
url url Compatible
source vcs-url Compatible
version version Compatible
revision vcs-ref Compatible
vendor vendor Compatible
title name Compatible
description description Compatible
documentation usage Value is compatible

if the
documentation is
located by a URL

authors No equivalent in
Label Schema

licenses No equivalent in
Label Schema

ref.name No equivalent in
Label Schema

schema-version No equivalent in the
OCI Image Spec

docker.*, rkt.* No equivalent in the
OCI Image Spec

39

https://label-schema.org

Conversion to OCI Runtime Configuration

When extracting an OCI Image into an OCI Runtime bundle, two orthogonal
components of the extraction are relevant:

1. Extraction of the root filesystem from the set of filesystem layers.
2. Conversion of the image configuration blob to an OCI Runtime configu-

ration blob.

This section defines how to convert an application/vnd.oci.image.config.v1+json
blob to an OCI runtime configuration blob (the latter component of extraction).
The former component of extraction is defined elsewhere and is orthogonal to
configuration of a runtime bundle.
The values of runtime configuration properties not specified by this document
are implementation-defined.

A converter MUST rely on the OCI image configuration to build the OCI run-
time configuration as described by this document; this will create the “default
generated runtime configuration”.

The “default generated runtime configuration” MAY be overridden or combined
with externally provided inputs from the caller.
In addition, a converter MAY have its own implementation-defined defaults
and extensions which MAY be combined with the “default generated runtime
configuration”.
The restrictions in this document refer only to combining implementation-
defined defaults with the “default generated runtime configuration”.
Externally provided inputs are considered to be a modification of the
application/vnd.oci.image.config.v1+json used as a source, and such
modifications have no restrictions.

For example, externally provided inputs MAY cause an environment variable to
be added, removed or changed.
However an implementation-defined default SHOULD NOT result in an envi-
ronment variable being removed or changed.

Verbatim Fields

Certain image configuration fields have an identical counterpart in the runtime
configuration.
Some of these are purely annotation-based fields, and have been extracted into
a separate subsection.
A compliant configuration converter MUST extract the following fields verbatim
to the corresponding field in the generated runtime configuration:

40

https://github.com/opencontainers/runtime-spec/blob/v1.0.0/bundle.md
layer.md
config.md
https://github.com/opencontainers/runtime-spec/blob/v1.0.0/config.md
https://github.com/opencontainers/runtime-spec/blob/v1.0.0/config.md
https://github.com/opencontainers/runtime-spec/blob/v1.0.0/config.md
layer.md

Image Field Runtime Field Notes
Config.WorkingDir process.cwd
Config.Env process.env 1
Config.Entrypoint process.args 2
Config.Cmd process.args 2

1. The converter MAY add additional entries to process.env but it
SHOULD NOT add entries that have variable names present in
Config.Env.

2. If both Config.Entrypoint and Config.Cmd are specified, the con-
verter MUST append the value of Config.Cmd to the value of
Config.Entrypoint and set process.args to that combined value.

Annotation Fields

These fields all affect the annotations of the runtime configuration, and are
thus subject to precedence.

Image Field Runtime Field Notes
author annotations 1,2
created annotations 1,3
Config.Labels annotations
Config.StopSignal annotations 1,4

1. If a user has explicitly specified this annotation with Config.Labels, then
the value specified in this field takes lower precedence and the converter
MUST instead use the value from Config.Labels.

2. The value of this field MUST be set as the value of org.opencontainers.image.author
in annotations.

3. The value of this field MUST be set as the value of org.opencontainers.image.created
in annotations.

4. The value of this field MUST be set as the value of org.opencontainers.image.stopSignal
in annotations.

Parsed Fields

Certain image configuration fields have a counterpart that must first be trans-
lated.
A compliant configuration converter SHOULD parse all of these fields and set
the corresponding fields in the generated runtime configuration:

41

Image Field Runtime Field
Config.User process.user.*

The method of parsing the above image fields are described in the following
sections.

Config.User

If the values of user or group in Config.User are numeric (uid or gid) then the
values MUST be copied verbatim to process.user.uid and process.user.gid
respectively.
If the values of user or group in Config.User are not numeric (user or group)
then a converter SHOULD resolve the user information using a method appro-
priate for the container’s context.
For Unix-like systems, this MAY involve resolution through NSS or parsing
/etc/passwd from the extracted container’s root filesystem to determine the
values of process.user.uid and process.user.gid.

In addition, a converter SHOULD set the value of process.user.additionalGids
to a value corresponding to the user in the container’s context described by
Config.User.
For Unix-like systems, this MAY involve resolution through NSS or parsing
/etc/group and determining the group memberships of the user specified in
process.user.uid.
If the value of user in Config.User is numeric, the converter SHOULD NOT
modify process.user.additionalGids.

If Config.User is not defined, the converted process.user value is
implementation-defined.
If Config.User does not correspond to a user in the container’s context, the
converter MUST return an error.

Optional Fields

Certain image configuration fields are not applicable to all conversion use cases,
and thus are optional for configuration converters to implement.
A compliant configuration converter SHOULD provide a way for users to extract
these fields into the generated runtime configuration:

Image Field Runtime Field Notes
Config.ExposedPorts annotations 1
Config.Volumes mounts 2

42

config.md#properties
config.md#properties
config.md#properties

1. The runtime configuration does not have a corresponding field for this
image field.
However, converters SHOULD set the org.opencontainers.image.exposedPorts
annotation.

2. Implementations SHOULD provide mounts for these locations such that
application data is not written to the container’s root filesystem.
If a converter implements conversion for this field using mountpoints, it
SHOULD set the destination of the mountpoint to the value specified
in Config.Volumes.
An implementation MAY seed the contents of the mount with data in the
image at the same location.
If a new image is created from a container based on the image described
by this configuration, data in these paths SHOULD NOT be included in
the new image.
The other mounts fields are platform and context dependent, and thus are
implementation-defined.
Note that the implementation of Config.Volumes need not use mount-
points, as it is effectively a mask of the filesystem.

Config.ExposedPorts

The OCI runtime configuration does not provide a way of expressing the
concept of “container exposed ports”.
However, converters SHOULD set the org.opencontainers.image.exposedPorts
annotation, unless doing so will cause a conflict.

org.opencontainers.image.exposedPorts is the list of values that corre-
spond to the keys defined for Config.ExposedPorts (string, comma-separated
values).

Annotations

There are three ways of annotating an OCI image in this specification:

1. Config.Labels in the configuration of the image.
2. annotations in the manifest of the image.
3. annotations in the image index of the image.

In addition, there are also implicit annotations that are defined by this section
which are determined from the values of the image configuration.
A converter SHOULD NOT attempt to extract annotations from manifests or
image indices.
If there is a conflict (same key but different value) between an implicit anno-
tation (or annotation in manifests or image indices) and an explicitly specified

43

config.md
config.md
manifest.md
image-index.md
manifest.md
image-index.md
manifest.md
image-index.md

annotation in Config.Labels, the value specified in Config.Labels MUST
take precedence.

A converter MAY add annotations which have keys not specified in the image.
A converter MUST NOTmodify the values of annotations specified in the image.

Extensibility

Implementations that are reading/processing manifests or image indexes MUST
NOT generate an error if they encounter an unknown property.
Instead they MUST ignore unknown properties.

Canonicalization

• OCI Images are content-addressable. See descriptors for more.
• One benefit of content-addressable storage is easy deduplication.
• Many images might depend on a particular layer, but there will only be

one blob in the store.
• With a different serialization, that same semantic layer would have a dif-

ferent hash, and if both versions of the layer are referenced there will be
two blobs with the same semantic content.

• To allow efficient storage, implementations serializing content for blobs
SHOULD use a canonical serialization.

• This increases the chance that different implementations can push the
same semantic content to the store without creating redundant blobs.

JSON

JSON content SHOULD be serialized as canonical JSON.
Of the OCI Image Format Specification media types, all the types ending in
+json contain JSON content.
Implementations:

• Go: github.com/docker/go, which claims to implement canonical JSON
except for Unicode normalization.

EBNF

For field formats described in this specification, we use a limited subset of Ex-
tended Backus-Naur Form, similar to that used by the XML specification.

44

manifest.md
image-index.md
https://en.wikipedia.org/wiki/Content-addressable_storage
descriptor.md
layer.md
image-layout.md
http://json.org/
http://wiki.laptop.org/go/Canonical_JSON
media-types.md
https://golang.org/
https://github.com/docker/go/
http://wiki.laptop.org/go/Canonical_JSON
https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form
https://www.w3.org/TR/REC-xml/#sec-notation

Grammars present in the OCI specification are regular and can be converted to
a single regular expressions.
However, regular expressions are avoided to limit abiguity between regular ex-
pression syntax.
By defining a subset of EBNF used here, the possibility of variation, misunder-
standing or ambiguities from linking to a larger specification can be avoided.
Grammars are made up of rules in the following form:

symbol ::= expression

We can say we have the production identified by symbol if the input is matched
by the expression.
Whitespace is completely ignored in rule definitions.

Expressions

The simplest expression is the literal, surrounded by quotes:

literal ::= "matchthis"

The above expression defines a symbol, “literal”, that matches the exact input
of “matchthis”.
Character classes are delineated by brackets ([]), describing either a set, range
or multiple range of characters:

set := [abc]
range := [A-Z]

The above symbol “set” would match one character of either “a”, “b” or “c”.
The symbol “range” would match any character, “A” to “Z”, inclusive.
Currently, only matching for 7-bit ascii literals and character classes is defined,
as that is all that is required by this specification.
Multiple character ranges and explicit characters can be specified in a single
character classes, as follows:

multipleranges := [a-zA-Z=-]

The above matches the characters in the range A to Z, a to z and the individual
characters - and =.
Expressions can be made up of one or more expressions, such that one must be
followed by the other.
This is known as an implicit concatenation operator.
For example, to satisfy the following rule, both A and B must be matched to
satisfy the rule:

45

symbol ::= A B

Each expression must be matched once and only once, A followed by B.
To support the description of repetition and optional match criteria, the postfix
operators * and + are defined.
* indicates that the preceeding expression can be matched zero or more times.
+ indicates that the preceeding expression must be matched one or more times.
These appear in the following form:

zeroormore ::= expression*
oneormore ::= expression+

Parentheses are used to group expressions into a larger expression:

group ::= (A B)

Like simpler expressions above, operators can be applied to groups, as well.
To allow for alternates, we also define the infix operator |.

oneof ::= A | B

The above indicates that the expression should match one of the expressions, A
or B.

Precedence

The operator precedence is in the following order:

• Terminals (literals and character classes)
• Grouping ()
• Unary operators +*
• Concatenation
• Alternates |

The precedence can be better described using grouping to show equivalents.
Concatenation has higher precedence than alernates, such A B | C D is equivalent
to (A B) | (C D).
Unary operators have higher precedence than alternates and concatenation, such
that A+ | B+ is equivalent to (A+) | (B+).

46

Examples

The following combines the previous definitions to match a simple, relative path
name, describing the individual components:

path ::= component ("/" component)*
component ::= [a-z]+

The production “component” is one or more lowercase letters.
A “path” is then at least one component, possibly followed by zero or more
slash-component pairs.
The above can be converted into the following regular expression:

[a-z]+(?:/[a-z]+)*

OCI Image Implementations

Projects or Companies currently adopting the OCI Image Specification

• projectatomic/skopeo
• Amazon Elastic Container Registry (ECR) (announcement)
• openSUSE/umoci
• cloudfoundry/grootfs (source)
• Mesos plans (design doc)
• Docker
• docker/containerd
• docker/docker (docker save/load WIP)
• docker/distribution (registry PR)
• Containers
• containers/build
• containers/image
• coreos/rkt
• box-builder/box

(to add your project please open a pull-request)

47

https://github.com/projectatomic/skopeo
https://docs.aws.amazon.com/AmazonECR/latest/userguide/image-manifest-formats.html
https://aws.amazon.com/about-aws/whats-new/2017/01/amazon-ecr-supports-docker-image-manifest-v2-schema-2/
https://github.com/openSUSE/umoci
https://github.com/cloudfoundry/grootfs
https://github.com/cloudfoundry/grootfs/blob/c3da26e1e463b51be1add289032f3dca6698b335/fetcher/remote/docker_src.go
https://issues.apache.org/jira/browse/MESOS-5011
https://docs.google.com/document/d/1Pus7D-inIBoLSIPyu3rl_apxvUhtp3rp0_b0Ttr2Xww/edit#heading=h.hrvk2wboog4p
https://github.com/docker
https://github.com/docker/containerd
https://github.com/docker/docker/pull/26369
https://github.com/docker/distribution/pull/2076
https://github.com/containers/
https://github.com/containers/build
https://github.com/containers/image
https://github.com/coreos/rkt
https://github.com/box-builder/box
https://github.com/opencontainers/image-spec/pulls

	Open Container Initiative
	Image Format Specification
	Table of Contents

	Notational Conventions
	Overview
	Understanding the Specification

	OCI Image Media Types
	Media Type Conflicts
	Compatibility Matrix
	application/vnd.oci.image.index.v1+json
	application/vnd.oci.image.manifest.v1+json
	application/vnd.oci.image.layer.v1.tar+gzip
	application/vnd.oci.image.config.v1+json

	Relations

	OCI Content Descriptors
	Properties
	Reserved

	Digests
	Verification
	Digest calculations
	Registered algorithms

	Examples
	OCI Image Layout Specification

	Content
	Example Layout
	Blobs
	Example Blobs

	oci-layout file
	oci-layout Example

	index.json file
	Index Example

	OCI Image Manifest Specification
	Image Manifest
	Image Manifest Property Descriptions
	Example Image Manifest

	OCI Image Index Specification
	Image Index Property Descriptions
	Example Image Index

	Image Layer Filesystem Changeset
	+gzip Media Types
	Distributable Format
	Change Types
	File Types
	File Attributes

	Creating
	Initial Root Filesystem
	Populate Initial Filesystem
	Populate a Comparison Filesystem
	Determining Changes
	Representing Changes

	Applying Changesets
	Changeset over existing files

	Whiteouts
	Opaque Whiteout

	Non-Distributable Layers
	OCI Image Configuration
	Terminology
	Layer
	Image JSON
	Layer DiffID
	Layer ChainID
	ImageID

	Properties
	Example

	Annotations
	Rules
	Pre-Defined Annotation Keys
	Back-compatibility with Label Schema

	Conversion to OCI Runtime Configuration
	Verbatim Fields
	Annotation Fields

	Parsed Fields
	Config.User

	Optional Fields
	Config.ExposedPorts

	Annotations

	Extensibility
	Canonicalization
	JSON

	EBNF
	Expressions
	Precedence
	Examples

	OCI Image Implementations

